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a b s t r a c t 

This review compiles recent advances and challenges in the photocatalytic treatment of natural water 

by analyzing the remediation of cyanotoxins. The review frames the treatment need based on the occur- 

rence, geographical distribution, and legislation of cyanotoxins in drinking water while highlighting the 

underestimated global risk of cyanotoxins. Next, the fundamental principles of photocatalytic treatment 

for remediating cyanotoxins and the complex degradation pathway for the most widespread cyanotoxins 

are presented. The state-of-the-art and recent advances on photocatalytic treatment processes are crit- 

ically discussed, especially the modification strategies involving TiO 2 and the primary operational con- 

ditions that determine the scalability and integration of photocatalytic reactors. The relevance of light 

sources and light delivery strategies are shown, with emphasis on novel biomimicry materials design. 

Thereafter, the seldomly-addressed role of water-matrix components is thoroughly and critically explored 

by including natural organic matter and inorganic species to provide future directions in designing highly 

efficient strategies and scalable reactors. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Blooms of algae in aquatic ecosystems can constitute a crit- 

cal threat to the ecosystem. The environmental implications of 

xcessive algal growth include a decrease in the dissolved oxy- 

en concentration, a sequestration of nutrients by algae that re- 

uces their availability to other species, and the absorption of sun- 

ight by the blooming algal biomass, which reduces light pene- 

ration for other species ( Sellner et al., 2003 ; WHO, 2013 ). From

 health perspective, a major concern is the formation of harm- 

ul algal blooms (HAB), which are characterized by the presence 

f toxin-producing algae that can release toxic compounds in the 

ater ( Anderson, 2015 ; Sellner et al., 2003 ). Direct consumption 

f water contaminated by HAB has been associated with numer- 

us events of death in pets and livestock animals. Although fatal 

xposure to cyanotoxins in human is much more rare, direct ex- 

osure through recreational activities have been associated with 

ospitalization due to pneumonia, liver damage, or hepatic fail- 
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re ( Bláha et al., 2009 ). There is an increasing amount of literature 

ocumenting potential chronic impacts, such as gastrointestinal ill- 

esses and cancer in human populations ( Kubickova et al., 2019 ). 

ith the increasing frequency of HAB due to climate change and 

he intensification of agricultural activities ( Anderson, 2015 ), there 

s an ever increasing need for efficient technologies able to treat 

yanotoxins-contaminated water. 

Cyanotoxins are produced by cyanobacteria, photosynthetic 

rokaryotes, as mostly cell-bound secondary metabolites that are 

eleased into the water after cell death ( Paerl and Otten, 2013 ; 

astogi et al., 2014 ). Common species able to produce cyan- 

toxins include Anabaena, Microcystis, Cylindrospermopsis, Nostoc, 

ynechococcus , and several others ( Anderson, 2015 ; Paerl and Ot- 

en, 2013 ). However, toxin production is not constant in most 

pecies and it is reported that between 25% and 75% of HAB world- 

ide are toxin producing ( Bláhová et al., 2007 ; Chorus, 2001 ). 

ven within the same location and with blooms formed of 

he same species, the HAB may not always be toxin-producing 

 Dittmann et al., 2013 ). The exact cause why a bloom may or may

ot be producing toxin is unclear. Different strains of the same 

pecies may lack the gene cluster responsible for toxin production 

r possess them in an inactive state that prevent the synthesis of 
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oxin ( Dittmann et al., 2013 ). In strains able to produce toxins, the

ntracellular toxin content was found to be modulated by a vari- 

ty of environmental or physiological factors such as temperature, 

ight, nutrient availability, presence of heavy metals, hydrodynamic 

onditions, organic matter, cell density, and grazing by predators 

 Boopathi and Ki, 2014 ; Merel et al., 2013a ). Given the complexity

f interactions existing between these different environmental trig- 

ers, predicting toxic production in HAB is still a major challenge. 

Cyanotoxins can be classified based on their chemical compo- 

ition or toxicological interactions. In terms of composition, cyan- 

toxins are broadly divided into cyclic peptides (e.g. mycrocystin, 

odularin), alkaloids (e.g. cylindrospermopsin, anatoxin, saxi- 

oxin), and lipopolysaccharides (e.g. endotoxin) ( Carmichael, 1992 ; 

odd et al., 1999 ; Ferrão-Filho and Kozlowsky-Suzuki, 2011 ). How- 

ver, cyanotoxins are produced by a wide variety of species, 

hich result in a large diversity of structures even within one 

oxin type. For example, there are more than 85 variants of mi- 

rocystins (MCs) alone ( Rastogi et al., 2014 ). Likewise, different 

yanotoxins can have different mechanism of action in mam- 

als, which lead to a classification of cyanotoxins based on their 

oxic effects: hepatotoxins (e.g. mycrocystin, nodularin, cylindros- 

ermopsin), neurotoxins (e.g. anatoxin, saxitoxin), or dermatotox- 

ns (e.g. aplysiatoxin, lyngbyatoxin-A) ( Carmichael and Boyer, 2016 ; 

errão-Filho and Kozlowsky-Suzuki, 2011 ). Several of these cyan- 

toxins have also been shown to lead to carcinogenic impacts over 

ime ( Kubickova et al., 2019 ). 

Because of these potential impacts on human health, reliable 

onitoring and treatment tools are critical to avoid deleterious ef- 

ects of cyanotoxins in drinking water. Cyanotoxins monitoring can 

e based on a range of immunological, biological, or physicochem- 

cal approaches and will vary depending on the type of cyanotoxin 

onsidered ( Kaushik and Balasubramanian, 2013 ; Melegari et al., 

012 ; Merel et al., 2013a ; Perreault et al., 2011 ). The detection

f cyanotoxins can be challenging because of the low detection 

imit of some analytical techniques for cyanotoxins, high analytical 

osts, and the co-occurrence of multiple cyanotoxins with multi- 

le mechanisms of action which cannot be all detected within the 

ame biological or immunochemical assay ( Al-Sammak et al., 2014 ; 

hia et al., 2019 ; Merel et al., 2013a ). Similar challenges exist for

he removal of cyanotoxins in water treatment systems, where a 

ixture of different compounds with dissimilar structure can co- 

xists and can be potentially toxic at low concentrations. Treat- 

ent technologies for cyanotoxins therefore needs to be efficient, 

on-specific, and able to achieve high removal at low concentra- 

ions. 

Conventional water treatments including flocculation, filtration, 

edimentation, and chlorination generally remove cyanobacteria 

nd low levels of (cyano) toxins. However, they are ineffective for 

ompletely degrading high levels of cyanotoxins produced during 

oderate and severe bloom events. The inability of these processes 

o completely degrade cyanotoxins has prompted the development 

nd implementation of advanced oxidation processes (AOPs). In 

eneral, AOPs are based on the generation of highly active oxidiz- 

ng species such as hydroxyl and other radicals via radiation, oxi- 

ation, catalysis, or a combination of these ( Antoniou et al., 2016 ; 

hatzitakis et al., 2008 ; Zhang et al., 2014a ). During the last 20

ears, studies on cyanotoxin removal have shown that AOPs can, 

n general, effectively remove cyanotoxins. However, further re- 

earch may face important challenges related to economic, practi- 

al, and environmental improvements in order for AOPs to become 

 realistic technology for large-scale cyanotoxin-removal treatment 

 Schneider and Bláha, 2020 ). 

Although many studies have not offered a holistic view con- 

idering economic and environmental aspects such as operational 

osts and the mineralization rate or toxic byproducts formed dur- 

ng cyanotoxin degradation, the degradation efficiency and energy 
2 
onsumption of UV/H 2 O 2 , UV/O 3 , UV/PS, UV/PMS, and UV/chlorine 

re highly competitive. However, electrochemical oxidation, radiol- 

sis, Fenton processes, and photocatalysis have also demonstrated 

trong potential for large-scale cyanotoxin removal ( Schneider and 

láha, 2020 ). During the last two decades, photocatalysis has been 

stablished as a useful technology for degrading various cyanotox- 

ns, including MCs and cylindrospermopsin (CYN) under UV, visi- 

le, and solar irradiation ( Antoniou et al., 2008a ; Liu et al., 2013 ;

estana et al., 2015 ). The non-selective nature of the free radicals 

roduced by AOPs makes them ideal for addressing the diversity of 

tructures found in cyanotoxins. However, thus far, there have been 

ew reports of photocatalytic technology adoption by water treat- 

ent utilities ( Lawton et al., 2003 ; Lee et al., 2004 ; Mauter et al.,

018 ), which indicate that there are still technical and economic 

imitations to the use of photocatalysis for cyanotoxin remediation 

n water treatment. Even confronted with these challenges, the use 

f photocatalysis in large-scale environmental applications is ex- 

ected to be widespread in the not-so-distant future as it gains the 

bility to emerge as an inexpensive, sustainable, and green tech- 

ology. 

In this review, we present the state of the art related to photo- 

atalytic treatment processes for the removal of cyanotoxins from 

rinking water from the last 20 years. We discuss the current is- 

ues related to geographical distribution and legislation of cyan- 

toxins in drinking water and evaluate the potential of photocat- 

lytic systems to achieve treatment goals for these contaminants. 

he role of the water matrix and the operational conditions are 

lso presented to highlight the current research needs in photocat- 

lytic treatment of cyanotoxins. 

. Geo-localization of cyanotoxin blooms and legislative actions 

aken 

.1. Geo-localization and geographical distribution of cyanotoxin 

looms 

Whereas the origins of cyanotoxins are certain, the conditions 

hat provoke cyanobacteria to produce and release them remain 

oorly understood. In most cases, cyanotoxins emerge with the for- 

ation of cyanobacterial HABs (cyanoHABs), whose growth is sus- 

ained, if not enhanced, in water exceeding 25 °C that exhibits high 

oncentrations of nutrients, especially phosphorous and nitrogen 

 Gkelis and Zaoutsos, 2014 ; O’Neil et al., 2012 ; WHO, 2011 ). Be-

ause anthropological activities and eutrophication (e.g., water pol- 

ution and globally rising temperatures) promote such high tem- 

eratures and nutrient concentrations in water, they also sus- 

ain, if not promote, the production and release of cyanotoxins. 

t the same time, increased precipitation, changes in pH lev- 

ls, extended periods of direct sunlight irradiation, stable strat- 

fication in bodies of water, and calm or stagnant water flows, 

mong other environmental factors, can also increase the growth 

f cyanoHABs ( Christophoridis et al., 2018 ; Environmental Protec- 

ion Agency, 2014 ). Owing to those factors, cyanobacterial growth 

ends to occur more often in dams, lakes, ponds, reservoirs, and 

low-moving rivers during the summer and autumn, especially in 

ropical and subtropical zones. Even so, cyanoHABs also grow in 

odies of fresh water, including in Swiss alpine lakes, throughout 

older regions of the world ( Fig. 1 ) ( Bernard et al., 2017 ; Du et al.,

019 ; Flores et al., 2018 ; Meriluoto et al., 2017 ). 

Although cyanotoxins are often retained in the cytoplasm of 

yanobacteria—that is, as intracellular cyanotoxins —in the presence 

f cyanoHABs, they can also be easily released when cyanobacteria 

ie or when stress occurs. Other cyanotoxins, including CYN, are 

aturally released by healthy cyanobacteria during the occurrence 

f cyanoHABs—in that case, as extracellular cyanotoxins . Both intra- 
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Fig. 1. Geographic worldwide distribution of cumulative number of the most commonly reported cyanotoxins. The map presents the regions in which toxins have been 

found in concentrations exceeding 0.3 ppb in at least five studies during the past 20 years. 
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ellular and extracellular cyanotoxins have to be considered in wa- 

er treatment processes, because their ratio to each other when re- 

eased during the growth of cyanoHABs is practically identical due 

o stress conditions and the death of cyanobacteria during that dy- 

amic process ( Buratti et al., 2017 ; Neilan et al., 2013 ; Wert et al.,

014 ). However, water treatment can also dramatically increase the 

elease of intracellular cyanotoxins due to cyanobacterial cell ly- 

is. In any case, the release of cyanotoxins, whether intracellular 

r extracellular, may depend more upon environmental conditions 

nd the external manipulation of water bodies than the presence 

f species able to produce toxins ( Panteli ́c et al., 2013 ; Pinho et al.,

015a ). 

Several circumstances—the incomplete understanding of bioac- 

ive substances produced by cyanobacteria, the increased occur- 

ence of cyanoHABs, the complexity of cyanotoxins’ release, and 

he limitations of analytical methods that preclude the rapid, sim- 

le, simultaneous identification of concentrations of cyanotoxins 

n water—explain the absence of a global study to systematically 

onitor geographical and temporal trends in the distribution of 

yanotoxins ( Du et al., 2019 ; Flores et al., 2018 ; Gkelis and Za-

utsos, 2014 ; O’Neil et al., 2012 ). Albeit estimated, the global dis- 

ribution of the six most common cyanotoxins (i.e., microcystins, 

odularins, CYNs, saxitoxins, anatoxins, and β- N -methylamino- l - 

lanine) appears in Fig. 1 . Although governmental and nongovern- 

ental reports about those cyanotoxins are more often released in 

urope and North America than in Asia, South America, Oceania, 

frica, and Antarctica, the map nevertheless shows that eradicat- 

ng cyanotoxins is very much a global challenge ( Du et al., 2019 ;

lores et al., 2018 ). A brief summary of the particularities of each 

egion is presented here: 

• Europe: Cyanotoxins are identified in western European regions 

(i.e., with an oceanic climate) characterized by cool summers, 

in far southern European regions (i.e., with a Mediterranean 

climate) characterized by hot summers, and in central–eastern 

European regions (i.e., with a continental climate) also charac- 

terized by relatively hot summers. In cold regions, including the 

Baltic Sea region and Serbia, the production of cyanotoxins in- 

tensifies during the summer due to increased water tempera- 

tures, especially on the water’s surface. Although MCs are the 

most commonly found cyanotoxins in Europe, CYNs, saxitox- 
3 
ins, and anatoxins are significantly present as well. Cyanotoxins 

are detected predominately in lakes in more than 28 European 

countries; however, recent studies have also demonstrated their 

presence in slow-moving rivers ( Cirés et al., 2014 ; Du et al., 

2019 ; Dziga et al., 2019 ; Flores et al., 2018 ; Kurmayer et al.,

2011 ; Lopes and Vasconcelos, 2011 ; Mantzouki et al., 2018 ; 

Meriluoto et al., 2017 ). According to the European Environment 

Agency, 88.2% of Europe’s fresh water (i.e., for drinking, indus- 

try, agriculture, and recreation) comes from rivers and ground- 

water, whereas the rest comes from reservoirs and lakes. Al- 

though cyanotoxins are detected predominantly in lakes and 

lake water represents only approximately 1.5% of Europe’s fresh 

water, the potential risks of cyanotoxins cannot be underesti- 

mated, because a truly global map of toxic cyanobacteria in Eu- 

rope remains unavailable ( Cirés et al., 2014 ; Du et al., 2019 ;

Dziga et al., 2019 ; Flores et al., 2018 ; Kurmayer et al., 2011 ;

Lopes and Vasconcelos, 2011 ; Mantzouki et al., 2018 ; Meriluoto 

et al., 2017 ). 
• Central and North America: Cyanotoxins have been detected 

in North and Central America in inland freshwater lakes and 

coastal areas, especially in the United States and Canada. The 

climate of Central and North America, including rain-drenched 

mountains and drought-ridden deserts, ranges from tropical to 

polar. All six types of cyanotoxins are identified in Central and 

North America; however, MCs are clearly the predominant type 

in the regions, followed by a significant presence of anatoxins 

and a lesser but far from negligible presence of CYN and saxi- 

toxins. In the Arctic region of North America, by contrast, MCs 

and nodularins are the predominant species, although cyan- 

otoxins are clearly more intensely present in tropical and sub- 

tropical regions to the south. Importantly, significant amounts 

of MCs, CYNs, and saxitoxins have been detected in more than 

30% of lakes and reservoirs in the United States. According 

to the U.S. Environmental Protection Agency, lakes and reser- 

voirs are important sources of surface water for drinking, in- 

dustrial purposes, and recreation; consequently, the widespread 

occurrence of cyanotoxins in the country’s lakes and reservoirs 

can pose risks to public health ( AWWA, 2016 ; Carmichael and 

Boyer, 2016 ; Du et al., 2019 ; Flores et al., 2018 ; Jacoby and

Kann, 2007 ; Loftin et al., 2016 ; Wiltsie et al., 2018 ). 
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• Asia: All six types of cyanotoxins have frequently been de- 

tected in the lakes, ponds, and reservoirs in the temperate 

and tropical coastal areas of Asia. At the same time, a non- 

negligible concentration of cyanotoxins has been found in the 

inland lakes and rivers of various countries in southern Asia. 

As mentioned, however, a truly global map of the risk of cyan- 

otoxins in Asia is impossible due to the limited number of re- 

ports and studies. The most prevalent climates in Asia—tropical 

rainforest, hot desert, warm humid continental, hot summer 

Mediterranean, humid subtropical, tropical savanna, and trop- 

ical monsoon climates—are ideal for the growth of cyanoHABs 

and, in turn, for the production of cyanotoxins. The most de- 

tected cyanotoxins in Asia are MCs, although significant con- 

centrations of CYNs, anatoxins, nodularins, and saxitoxins have 

also been reported. Given the region’s ideal conditions for the 

development of cyanoHABs, even partial data suggest that mon- 

itoring and removing cyanotoxins may be pivotal to manag- 

ing Asia’s water resources ( Du et al., 2019 ; Flores et al., 2018 ;

Greer et al., 2017 ; Liu et al., 2011 ; Wilhelm et al., 2011 ). 
• South America: Up to five common types of cyanotoxins (i.e., 

MCs, nodularins, CYN, saxitoxins, and anatoxins) have been 

detected in several South American countries, whereas β- 

N-methylamino-l-alanine is only identified in Peru. Although 

cyanotoxins are predominantly found in South America’s reser- 

voirs, they have also been detected in its lakes and rivers. The 

continent’s regions are dominated by a warm climate, which is 

most suitable for the growth of cyanoHABs, whether in tropical 

or temperate regions. Despite such excellent conditions for the 

growth of cyanoHABs and the high concentration of cyanotox- 

ins detected in several sources of surface water (e.g., San Roque 

Lake, Cordoba, Argentina), South American countries have is- 

sued fewer reports than other countries, which makes mon- 

itoring the real distribution of cyanotoxins on the continent 

considerably difficult ( Du et al., 2019 ; Flores et al., 2018 ; Hoff-

Risseti et al., 2013 ; Ruiz et al., 2013 ; Vieira et al., 2005 ). 
• Oceania: All six types of cyanotoxins have been detected fre- 

quently in the inland lakes, rivers, and ponds of eastern and 

southern Australia, as well as on surrounding islands such as 

New Zealand. As elsewhere in the world, the most commonly 

detected cyanotoxins in Oceania are MCs. Oceania has a number 

of different climates, ranging from desert to tropical rainforest, 

although the most prevalent are oceanic and tropical rainfor- 

est climates. The continent’s hot, humid regions result in the 

growth of cyanoHABs ( Du et al., 2019 ; Flores et al., 2018 ). How-

ever, in Australia, a mainly arid climate, major cyanoHABs occur 

under dry and hot conditions, thus affecting water-stressed ar- 

eas. 
• Africa: The six most common types of cyanotoxins have also 

been found in all countries in Africa, with the exception of 

Ethiopia, possibly due to the limitation in analytical methods. 

The most common are MCs, which have been detected in in- 

land rivers, lakes, reservoirs, and ponds. Africa hosts many dif- 

ferent climates, the most prevalent of which is tropical savanna. 

Because such environmental conditions, along with high pollu- 

tion in some water sources, promote the growth of cyanoHABs, 

cyanotoxins are causing major problems in the lakes and wa- 

ter reservoirs of eastern and southern Africa ( Du et al., 2019 ; 

Flores et al., 2018 ; Krienitz et al., 2013 ). 
• Antarctica: Despite the cold temperatures of the region, MCs, 

nodularins, CYN, and saxitoxins have been detected in Antarc- 

tica, whereas anatoxins and β-N-methylamino-l-alanine have 

not. The detection of cyanotoxins in Antarctica especially 

demonstrates the strong adaptability of cyanobacteria and 

cyanotoxins, which can grow even in conditions unfavorable to 

the growth of cyanoHABs, which highlights the potential risk of 

cyanotoxins worldwide ( Du et al., 2019 ; Flores et al., 2018 ). 
d

4 
Although fully depicting the geographical distribution of cyan- 

toxins around the world is impossible, their potential risk can be 

oncluded from their detection on all seven continents. The bioac- 

ive substances pose a greater potential risk in tropical, subtrop- 

cal, and warm areas; however, the global risk cannot be under- 

stimated because not all cyanotoxins have been discovered and 

any have been detected in non-negligible concentrations even in 

egions with environmental conditions highly unfavorable to the 

rowth of cyanoHABs. 

.2. Legislative actions taken to face a worldwide challenge 

Cyanotoxin limits in drinking and recreational water bodies are 

ncreasingly being subjected to national and international advi- 

ories, guidelines, and regulations. Although the World Health Or- 

anization (WHO) has published a provisional guideline of 1 ppb 

f MC-LR for drinking water, no guidelines have been issued for 

ther variants of MCs or other cyanotoxins ( Edition and First, 2008 ; 

arrer et al., 2015 ; Ibelings et al., 2014 ). Available toxicological 

ata confirm the potential risks of various cyanotoxins for human 

ealth; however, they are insufficient to establish limits for their 

oncentration in drinking water. Nevertheless, the data have jus- 

ified health alerts, as well as advisories, guidelines, and regula- 

ions for drinking water, in countries such as Singapore, France, 

pain, Uruguay, and Czech Republic. Other states such as Canada 

ave set upper limits of 1.5 ppb for total MCs, whereas Australia 

as established guidelines of 1.3 ppb for total MCs and published 

ealth advisories of 1 ppb and 3 ppb for CYNs and saxitoxins, re- 

pectively ( Farrer et al., 2015 ; Funari et al., 2017 ; Hudnell, 2010 ;

belings et al., 2014 ; Vogiazi et al., 2019 ). In the European Union,

uropean Directives 1998/83/EC and 2013/397EU govern the drink- 

ng water legislation of the various member states, with the aim 

to protect human health from the adverse effects of any con- 

amination of water intended for human consumption by ensur- 

ng that it is wholesome and clean.” Despite the wide distribu- 

ion of cyanotoxins in European bodies of water ( Fig. 1 ), the most

ecent EU Decision (2018/840) to update the substances of envi- 

onmental concern for European Union does not specifically ad- 

ress cyanotoxins. In the United States, there are no established 

egulations for cyanotoxins, although MCs, CYN, saxitoxins, and 

natoxin-a are included in the Candidate Contaminant List 4 of 

he U.S. Environmental Protection Agency (EPA). In 2015, the EPA 

ublished a 10-day health advisory for CYN of 0.7 ppb in drink- 

ng water for bottle-fed infants and preschool children and of 3 

pb for school-age children and adults. For total microcystins, the 

dvisories state a limit of 0.3 ppb in drinking water for bottle- 

ed infants and preschool children and of 1.6 ppb for school- 

ge children and adults. In addition, several states have estab- 

ished internal health advisories or actions applicable for their do- 

ains ( Edition and First, 2008 ; Farrer et al., 2015 ; Hudnell, 2010 ;

belings et al., 2014 ). 

In the context of recreational water, the WHO considers cur- 

ent guidelines for cyanotoxins to be inappropriate. The WHO has 

ecommended guidelines and regulations based upon cyanobacte- 

ial cell density, bio-volume, and pigment levels, all of which di- 

ectly relate to the concentration of cyanobacteria and cyanotox- 

ns. Based on those criteria, in most cases, countries apply two- or 

hree-tier alert levels indicating the potential risk for human health 

 Hudnell, 2010 ; WHO, 2006 ). However, to further advance how the 

yanotoxins is regulated, the development of more precise, rapid 

onitoring and analytical methods is urgently required, as is the 

mprovement of available toxicological data that can guide the es- 

ablishment of more informed regulatory limits for cyanotoxins in 

rinking water. 
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. Fundamental principles of photocatalytic treatment for 

yanotoxins remediation 

Photocatalytic behavior of semiconductor materials was firstly 

eported by Fujishima and Honda in 1972 ( Akira Fujishima and 

enichi Honda, 1972 ). The fundamental principle of photocataly- 

is relies in the photo-excitation of an electron (e CB 
−) from the 

lled valence band (VB) to the empty conduction band (CB). The 

lectron transition to the excited state is induced by the material 

bsorption of photons with energy equal or superior to the band 

ap energy (E g ) ( Etacheri et al., 2015 ; Hoffmann et al., 1995 ). The

hoto-excited e CB 
− leaves a positively charged hole or vacancy at 

he valence band (h VB 
+ ) according to reaction (1). Photogenerated 

pecies e CB 
−/ h VB 

+ are referred as charge carriers. 

emiconductor + hν → e CB 
−+ h VB 

+ 
(1) 

Both charge carriers can be involved in different charge trans- 

er processes. Indeed, h VB 
+ are strong oxidants that can oxidize or- 

anic compounds up to their complete mineralization. In aqueous 

edia h VB 
+ can react with water yielding hydroxyl radical ( •OH) 

ollowing reaction (2), the second strongest oxidant known after 

uorine ( Etacheri et al., 2015 ; Hoffmann et al., 1995 ). On the other

and, photogenerated e CB 
− is a reducing species. Reaction of e CB 

−

ith dissolved oxygen can produce the weak oxidant superoxide 

adical (O 2 
•−) according to reaction (3). Note that other e CB 

− scav- 

ngers such as H 2 O 2 can enable additional oxidants production 

rom reaction (4). These oxidant species produced on the catalyst 

urface remain adsorbed or close to the catalyst surface. The degra- 

ation of pollutants is then dependent of their adsorption and/or 

imited by their mass transfer towards/from the photocatalyst sur- 

ace ( Chong et al., 2010 ; Etacheri et al., 2015 ; Hoffmann et al.,

995 ). 

 2 O+ h VB 
+ → 

•OH+ H 

+ (2) 

 2 + e CB 
− → O 2 

• (3) 

 2 O 2 + e CB 
−→ 

•OH + O H 

− (4) 

Photocatalysis is a light-driven process that produces oxidant 

pecies in situ . The kinetics of oxidant generation is causally related 

o the number of photons delivered to the catalyst surface per sec- 

nd as can be deduced from reaction (1). In this context, it is ex- 

remely relevant to provide information of the photon fluence or 

rradiance of any experimental set-up. Failure to report these val- 

es will result in technical reports that cannot be benchmarked or 

ompared to other works in literature ( Duta et al., 2018 ; Ovhal and

hakur, 2010 ). 

Process efficiency is defined by the usage of delivered photons 

or the reaction of interest or quantum yield. Light transport to 

he surface catalyst is one of the relevant elements that can af- 

ect overall process efficiency. Turbidity and competing species in 

olution may diminish the absorption of photons on the catalyst 

urface. One of the major drivers of photocatalytic efficiency is re- 

ated to the stability of charge carriers. Species in excited state (i.e., 

 CB 
−) are unstable and tend to return to the ground state of lower 

nergy. Recombination reaction (5) is the main drawback for pho- 

ocatalytic degradation of organic pollutants such as cyanotoxins 

 Gaya and Abdullah, 2008 ; Hoffmann et al., 1995 ; Kisch, 2010 ). 

 CB 
−+ h VB 

+ → heat (5) 

Titanium dioxide (TiO 2 ) has been widely reported as photocat- 

lyst material for cyanotoxins abatement. Nanosized TiO 2 is an n - 

ype semiconductor with a characteristic E g of ∼3.0 eV reported for 

ts main crystalline structures: anatase, rutile, and brookite. Photo- 

atalysis of pure TiO is therefore conducted with UV light with 
2 

5 
avelengths ( λ) < 400 nm that corresponds to energies of > 3.1 

V. Anatase is the most photo-active due to the higher spatial sep- 

ration between charge carriers induced by the crystalline struc- 

ure, which results in a prolonged lifetime of e CB 
− /h VB 

+ . However, 

eterojunctions formed between these different TiO 2 crystalline 

tructures have shown also increased photocatalytic performance 

 Dávila-Jiménez et al., 2018 ; El-Sheikh et al., 2017 ; Han et al., 2011 ;

elaez et al., 2012 ). 

The spectrum of solar radiation has a small component of UV- 

ight ( < 4.0 %). Low UV irradiance from natural sunlight limits the 

ikelihood of high efficiency and performance of pure TiO 2 pho- 

ocatalysis. To enable visible light photocatalysis, TiO 2 doping has 

een the most explored strategy. Even though the E g of TiO 2 re- 

ains almost identical, dopants introduce energy levels within 

iO 2 bandgap. Existence of these intraband levels allows photoex- 

itation to occur in two transition steps that require two photons 

f lower energy (within visible light spectra). Use of these visi- 

le active materials do not affect dramatically fundamental mech- 

nisms of TiO 2 photocatalysis ( El-Sheikh et al., 2017 ; Han et al., 

011 ; Pelaez et al., 2012 ). 

. Large molecules: complex degradation pathways 

Description and understanding of mechanisms of oxidation and 

egradation pathways enlighten the development of treatment 

trategies to ensure complete inactivation of these recalcitrant 

yanotoxins. The complexity of the molecular structure of cyan- 

toxins (i.e. MCs) is deemed as the major challenge for the defi- 

ition of degradation pathways. Photocatalytic treatment of organ- 

cs involves the in situ generation of strong oxidants ( Orha et al., 

017 ; Spasiano et al., 2015 ; Villaluz et al., 2019 ). Many research

rticles have identified the photogenerated h vb 
+ and 

•OH as the 

ain species involved in oxidation processes ( Dávila-Jiménez et al., 

018 ; Ohtani, 2011 ; Spasiano et al., 2015 ). These oxidant species 

an completely mineralize organic pollutants through three main 

ind of reactions: (i) hydroxylation, (ii) dehydrogenation, and (iii) 

harge transfer processes ( Oturan and Aaron, 2014 ). These reac- 

ions have been also identified in the degradation pathway of dif- 

erent types of cyanotoxins as described herein ( Hu et al., 2017 ; 

ang et al., 2011 ). It is well known that •OH is a non-selective

xidant, which leads to a myriad of possible pathways. However, 

dentification of intermediates by LC-MS has been key to identify 

ieces of this complex puzzle and to elucidate preferential degra- 

ation mechanisms of the two major cyanotoxins studied in litera- 

ure: MCs and CYN. 

.1. Insights into microcystin macrocycles cleavage 

MCs are cyclic heptapeptides with a similar basic structure that 

s solely differentiated by the variation of two aminoacids found 

n the position Y and Z described in Fig. 2 . This variability leads

o at least 85 different MCs that can be naturally found in water 

ources ( Christoffersen and Kaas, 20 0 0 ; Lawton et al., 20 03 ). The

ifferent MCs are named by the single letter abbreviation of these 

wo variable aminoacids. For example, the most common MC-LR 

s named after the aminoacids leucine (L) and arginine (R). In this 

ection the degradation pathways will be described for MC-LR as 

he most representative MC, but similar degradation pathways can 

e associated to other MCs ( Antoniou et al., 2008a ; Chen et al.,

012 ). 

Fig. 2 summarizes the scission of the Adda side chain of MC 

s initial step for MC mineralization. The initial step is defined 

y the hydroxylation of the double bounds of Adda either at the 

hain position C4-C5 or C6-C7 yielding product 2 and 3 , respec- 

ively ( Antoniou et al., 2008b ; Fan et al., 2020 ). Further oxidation of

 by •OH leads to the breakage of the C-C bond forming aromatic 
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Fig. 2. Degradation pathway of MC-LR mediated by oxidants generated during photocatalytic treatment ( Antoniou et al., 2008b ; Fan et al., 2020 ; Hu et al., 2017 ; Yang et al., 

2011 ). 
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cid 4 and peptide macrocycle 5 with an aldehyde group at the 

ormer C4 position. Whereas, the cleavage at C6-C7 forms ketone 

 and shorter aromatic acid 7 . It is important that intermediate 6 

an be further oxidized at the carbonyl position of the ketone to 

orm 5 . Oxidation of this terminal position generates 8 , which has 

een identified as the previous stage to cleavage of peptide bonds 

f the macrocycle ( Yang et al., 2011 ). Note that hydroxylation of 

he aromatic ring can occur simultaneously ( Hu et al., 2017 ). 

Fig. 3 illustrates the opening of the macrocycle by the cleavage 

f the peptide bonds. Hydrolysis of the peptide bond is activated 
6 
y •OH addition on the carbonyl group, which may occur in differ- 

nt positions. Chen’s group identified preferential cleavage in four 

ositions yielding intermediates 9-12 . Further scission of peptide 

onds results in the accumulation of different oligopeptides such 

s 13-20 . Complete mineralization of aminoacids forms inorganic 

ons from N-heteroatoms that are released as ammonia, nitrate, or 

-volatiles promoted by •OH oxidation ( Triantis et al., 2012 ). 

The main mechanistic steps described are hydroxylation re- 

ctions via substitution, addition to double bonds, and oxidative 

ond cleavage. These steps are clearly associated to •OH me- 
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Fig. 3. Degradation pathway of MC-LR mediated by oxidants generated during photocatalytic treatment (continuation) ( Antoniou et al., 2008b ; Fan et al., 2020 ; Hu et al., 

2017 ; Triantis et al., 2012 ; Yang et al., 2011 ).. 
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iation, in agreement with scavenging experiments that identi- 

ed this species as main oxidant of MCs ( Antoniou et al., 2009 ;

ornish et al., 20 0 0 ). These reactions can lead to different path-

ays beyond the simplified mechanisms described herein. Indeed, 

dentification of additional by-products suggest that cleavage of the 

eptide macrocycle can occur prior to Adda scission. Coexistence of 

oth pathways must be considered. Indeed, breakage of the pep- 

ide macrocycle can be associated to the quick detoxification of 

Cs via photocatalysis, which can be assumed that takes place 

rior complete mineralization. 
7 
.2. Insights into Cylindrospermopsin breakage 

CYN degradation can be initiated by hydroxylation of the uracil 

ing yielding product 2 , which is under tautomeric equilibria with 

 . Both tautomers undergo further hydroxylation at the uracil ring 

ielding 4 and 5 ( Chen et al., 2015 ). A redox equilibrium exists be-

ween 4 and 5 , that can be interconverted by charge transfer pro- 

esses at the catalyst surface. Alternatively, the first CYN degrada- 

ive step can involve the oxidation of the hydroxylated carbon be- 

ween the uracil and tricyclic guanidine cycles yielding 6 followed 
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Fig. 4. Photocatalytic degradation pathway of CYN ( Chen et al., 2015 ; Fotiou et al., 2015 ). 
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y further hydroxylation to give 7 . Whereas, hydrogen abstraction 

y •OH requires electron rich substrates and it is relatively slow 

ompared to •OH addition ( Fotiou et al., 2015 ). Subsequent oxi- 

ation steps induce the uracil cleavage yielding N-species into so- 

ution such as ammonia, nitrate, or N-organics (i.e. formamide) 

nd tricyclic guanidine derivatives 8 and 9 . Oxidation of the side 

hain leads to formation of intermediates 10 - 12 . Cleavage of tri- 

yclic guanidine cycle mediated by •OH and other oxidants forms 

3 , which degradation is followed by the release of low molec- 

lar weight carboxylic acids and eventually complete mineraliza- 

ion into CO 2 and inorganic ions sulfate, ammonia, and nitrate 

 Fotiou et al., 2015 ). Note that desulfonation reaction mediated by 

OH addition can take place at any step (exemplified in the inset 

anel of Fig. 4 ). 
8 
Toxicity steadily decreases during treatment time, but there is 

esidual activity until advanced degrees of samples mineraliza- 

ion ( Chen et al., 2015 ). These results allow inferring that the by-

roducts formed during the photocatalytic treatment may have 

nalogous biological activity to the parent compound CYN. In con- 

rast to MC, complete cleavage of uracil and tricyclic guanidine cy- 

les of CYN must be attained to diminish toxicity. 

. Photocatalytic degradation of cyanotoxins 

.1. Photocatalytic performance 

Complete abatement of cyanotoxins has been attained with 

hotocatalytic treatment with reported kinetic constants ranging 
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Fig. 5. (a) Photocatalytic degradation of MC-LR at pH 3.0 under UV irradiation with NF-TiO 2 and reference TiO 2 films under 4.6 × 10 −5 W cm 

−2 irradiance. (b) MC-LR 

degradation rate at pH 3.0 with reference TiO 2 , commercial P-25 TiO 2 , and NF-TiO 2 photocatalysts films after 180 min of visible light irradiation ( λ > 420 nm) under 

7.8 × 10 −5 W cm 

−2 irradiance. 

Reproduced with permission from reference ( Pelaez et al., 2010 ). 
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rom 10 −3 min 

−1 to 10 −1 min 

−1 as summarized in Tables 1 –3 . 

owever, experimental data is hard to compare due to the wide 

ifferences in experimental conditions that influence removal per- 

ormance ( i.e. , pH, catalyst dose, irradiance, lamp source, etc.) that 

xplain such wide variability of orders of magnitude on kinetic 

onstants. 

Titania (TiO 2 ) has been the most extensively investigated pho- 

ocatalyst among photoactive semiconductor materials for cyan- 

toxins abatement ( Andersen et al., 2014 ; Pestana et al., 2015 ;

obertson et al., 2012 ; Sharma et al., 2012 ; Zhang et al., 2014b ).

he wide bandgap of TiO 2 (3.2 eV for anatase, 3.0 eV for rutile, 

nd ∼3.2 eV for brookite) limits its application to UV light sources 

 El-Sheikh et al., 2017 ; Han et al., 2011 ; Pelaez et al., 2012 ). Thus,

xtensive research efforts have been devoted to pure TiO 2 modi- 

cation to enable visible light/natural sunlight photoactivity. Dop- 

ng of pure semiconductors can decrease their bandgaps and acti- 

ate a photocatalytic response within the visible light spectra. The 

emiconductor lattice and the relative atomic size of the dopant 

efine two different classes of doping: (i) interstitial, and (ii) sub- 

titutional. Interstitial doping is generally observed in TiO 2 lattices 

i.e., rutile and anatase) when doping with non-metal elements 

uch as carbon, nitrogen, fluoride, or sulfur ( Asahi et al., 2001 ; 

hen and Mao, 2007 ; Serpone, 2006 ; Umebayashi et al., 2002 ; 

u et al., 2002 ). For example, Pelaez et al. have reported that TiO 2 

hotocatalysts co-doped with nitrogen and fluorine (NF-TiO 2 ) ex- 

ibited less bandgap energy than commercial P-25 TiO 2 (2.85 vs. 

.20 eV) ( Pelaez et al., 2010 ). As shown in Fig. 5 , after 180 min

f visible-light irradiation, no MC-LR degradation could observed 

sing reference TiO 2 and P-25 TiO 2 , whereas non-negligible degra- 

ation was observable under UV irradiation. Conversely, the NF- 

iO 2 photocatalyst achieved excellent photocatalytic degradation of 

C-LR during the irradiation period. Meanwhile, metal dopants of 

arger atomic radius may replace Ti atoms in the lattice, such as 

bserved with bismuth or rhodium ( Lv et al., 2009 ; Wei et al.,

009 ; Wu et al., 2009 ). 

Conversely, a different alternative for visible light photoac- 

ive catalysts has been the nano-engineering of semiconduc- 

or/semiconductor or metal/semiconductor interfaces. The use of 

anocomposites demonstrates synergistic effects between the dif- 

erent crystalline phases in terms of catalysts photoresponse 

nd stabilization of charge carriers ( Serrà and Philippe, 2020 ; 

ang et al., 2014 , 2013 ; Xiong et al., 2018 ). In other investigations,

isible light-sensitive photocatalysts such as ZnFe 2 O 4 -, ZnO-, and 

g 2 CrO 4 -based ones have demonstrated success in photocatalysis 
h

9 
y allowing the use of artificial visible light for the complete pho- 

odegradation of cyanotoxins, even when the UV light was filtered. 

evertheless, those strategies have often complicated synthesis 

hat may hinder effective translation ( Chen et al., 2012 ; Fan et al.,

020 ; Serrà et al., 2020b ; Zhang et al., 2009 ). Nano-decoration of 

emiconductor with metals and other materials such as graphene 

xide (GO) or graphitic carbon nitride (g-C 3 N 4 ) are also widely ex- 

lored ( Lv et al., 2019 ; Oliveros et al., 2021 ; Sampaio et al., 2015b ;

ugaoen et al., 2017 ). The individual components of the compos- 

te usually remain separate and distinct within the finished pho- 

ocatalytic material. The formation of an interface can modify the 

pace-charge region near due to the higher electron affinity of the 

onductive material (i.e., metal, GO, g-C 3 N 4 ), which makes these 

aterials behave as electron sinks. The Schottky barrier potential 

ormed at the interface delays the recombination of charge car- 

iers and extends the time of life of e cb 
− and h VB 

+ . Apart from

he electron trapping mechanism enabled when considering pho- 

ocatalyst nano-decoration with a conductive material, the forma- 

ion of such interface can in some cases contribute to achieving 

 pseudo -lower band gap that allows for lower excitation energies 

 Kochuveedu et al., 2013 ). 

The high competitiveness of photocatalysis as a remediation 

echnology for cyanotoxin polluted water sources is clearly sup- 

orted with experimental evidences. Unfortunately, these experi- 

ents are hardly benchmarked using comparative conditions nor 

onsidering engineering figures of merit. Future research effort s 

ust consider a baseline of comparison to truly evaluate pho- 

ocatalyst performance beyond the casuistic abatement of target 

yanotoxins, in which techno-economic evaluation can assist re- 

earchers to define the road map for successful technology trans- 

ation. 

.2. Role of pH on the photocatalytic performance and removal 

inetics 

The pH of water bodies plays a vital role in the photocatalytic 

egradation of cyanotoxins due to several physicochemical phe- 

omena governed by pH. Herein it is discussed the effect of pH 

n catalyst surface characteristics and its interaction with target 

ollutants. 

In aqueous environments, the surface charge of a semiconduc- 

or is attributed to two mechanisms: (i) the amphoteric dissoci- 

tion of surface MOH groups; and (ii) the adsorption of primary 

ydroxo complexes and other functional groups. Both mechanisms 
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Table 1 

Operational conditions for and catalytic performance of the photodegradation of MCs. 

Concentration / 

ppm 

pH Photocatalyst Dose / 

g L −1 

Volume / 

mL 

Light source Irradiance Removal / % Time of 

treatment / 

min 

k 1 / min −1 k / 

min −1 g −1 

Ref 

UV- driven photocatalysts 

1.0 3.0 TiO 2 films 5.0 10 2 15 W 35 × 10 −6 W cm 

−2 100 30 1.5 × 10 −1 ∼3.0 ( Antoniou et al., 2008a ) 

10 3.0 BiWO 3 -Ph1.0 0.2 5 100 W LP Hg n.a. 100 30 1.3 × 10 −1 ∼130 ( Chen et al., 2012 ) 

0.2 4.0 TiO 2 P-25 10 n.a. Xe 280 W 330-450 nm n.a. 100 8 ∼ 6.8 × 10 −1 n.a. ( Cornish et al., 2000 ) 

0.2 4.0 TiO 2 P-25 10 10 Xe 480 W 330-450 nm 2.48 × 10 5 Einstein min −1 97 

100 

10 

30 

n.a. 

n.a. 

n.a. 

n.a. 

( Lawton et al., 2003 ) 

0.2 4.0 TiO 2 P-25 10 10 Xe 480 W 330-450 nm 2.48 × 10 5 Einstein min −1 53 

83 

10 

30 

n.a. 

n.a. 

n.a. 

n.a. 

( Lawton et al., 2003 ) 

0.2 4.0 TiO 2 P-25 10 10 Xe 480 W 330-450 nm 2.48 × 10 5 Einstein min −1 100 10 n.a. n.a. ( Lawton et al., 2003 ) 

0.2 4.0 TiO 2 P-25 10 10 Xe 480 W 330-450 nm 2.48 × 10 5 Einstein min −1 100 10 n.a. n.a. ( Lawton et al., 2003 ) 

10 4.0 C/N/S-TiO 2 0.4 40 UV-A (max = 365 nm) 2 × 10 −3 W cm 

−2 100 15 0.26 ∼16 ( Light and Using, n.d. ) 

80 4.0 TiO 2 P-25 10 n.a. Xe 280 W 330-450 nm n.a. 100 50 8.8 × 10 −2 n.a. ( Robertson et al., 1998 ) 

5 5.6 TiO 2 -P-25 

PMS-4mg/L 

0.01 10 Xe UVA 9.88 10 −3 W 100 5 n.a. n.a. ( Antoniou et al., 2018 ) 

0.56 6.4 TiO 2 P-25 1 20 HP Hg 100 W 55 × 10 −3 W cm 

−2 100 40 4.4 × 10 −2 ∼2.2 ( Feitz et al., 1999 ) 

1 6.5 TiO 2 P-25 0.05 40 4 UV-LED 1.6 W 365 nm 28.6 × 10 −3 W cm 

−2 99.9 15 0.261 ∼130 ( Yang et al., 2020 ) 

2.0 6.8 

3.0 

TiO 2 films 0.14 10 2 15 W 35 × 10 −6 W cm 

−2 ∼37.5 

∼92 

240 

240 

∼2.1 × 10 −3 

∼8.8 × 10 −3 

∼1.4 

∼5.0 

( Antoniou et al., 2009 ) 

0.01 n.a. TiO 2 P25 1 n.a. Xe 480 W 250-600 nm 11 × 10 −3 W cm 

−2 100 45 n.a. n.a. ( Liu et al., 2009 ) 

Visible light- driven photocatalysts 

0.5 3.0 NF-TiO 2 films n.a. n.a. 15 W fluorescent (UV filter) 7.81 × 10 −5 W cm 

−2 75 120 ∼1.3 × 10 −2 n.a. ( Pelaez et al., 2010 ) 

0.5 3.0 TiO 2 P-25 film n.a. n.a. 15 W fluorescent (UV filter) 7.81 × 10 −5 W cm 

−2 47 120 ∼6.1 × 10 −3 n.a. ( Pelaez et al., 2010 ) 

0.5 3.0 S-TiO 2 films n.a. n.a. 15 W fluorescent (UV filter) 9.05 × 10 −5 W cm 

−2 60 720 n.a. n.a. ( Han et al., 2011 ) 

0.5 3.0 NF-TiO 2 n.a. n.a. 15 W fluorescent (UV filter) 7.81 × 10 −5 W cm 

−2 100 240 ∼6.3 × 10 −2 n.a. ( Pelaez et al., 2011 ) 

0.5 3.0 NF-TiO 2 

S-TiO 2 

n.a. 

n.a. 

n.a. 

n.a. 

2 × 15W Fluorescent 7.81 × 10 −5 W cm 

−2 50 

70 

300 

300 

n.a. 

n.a. 

n.a. 

n.a. 

( Likodimos et al., 2013 ) 

0.5 3.0 CN-TiO 2 n.a. 20 2 × 15W Fluorescent 9.05 × 10 −5 W cm 

−2 75 300 n.a. n.a. ( Liu et al., 2013 ) 

0.6 3.0 N-TiO 2 1 n.a. 2 × 15W Fluorescent 7.5 × 10 −5 W cm 

−2 100 300 ∼2.8 × 10 −3 n.a. ( Livraghi et al., 2013 ) 

2 3.0 Bi-TiO 2 0.25 n.a. 500 W halogen n.a. 80 

100 

120 

720 

∼1.3 × 10 −2 

n.a. 

n.a. 

n.a. 

( Yang et al., 2011 ) 

2 3.0 TiO 2 -P-25 0.25 n.a. 500 W halogen n.a. 50 720 n.a. n.a. ( Yang et al., 2011 ) 

10 4.0 C/N/S-TiO 2 0.4 40 LED (max = 420 nm) 1 × 10 −3 W cm 

−2 100 180 0.04 ∼2.5 ( Light and Using, n.d. ) 

100 4.0 TiO 2 P-25 10 5 500 W halogen 393 μM 

−1 40 60 n.a. n.a. ( Graham et al., 2010 ) 

100 4.0 TiO 2 -Rh(III) 10 5 500 W halogen 393 μM 

−1 100 60 n.a. n.a. ( Graham et al., 2010 ) 

100 4.0 TiO 2 -C 10 5 500 W halogen 393 μM 

−1 80 60 n.a. n.a. ( Graham et al., 2010 ) 

100 4.0 TiO 2 -Pt 10 5 500 W halogen 393 μM 

−1 90 60 n.a. n.a. ( Graham et al., 2010 ) 

0.3 5.0 Ag 2 CO 3 -GO 250 20 Xe n.a. 100 60 n.a. n.a. ( Fan et al., 2020 ) 

0.3 5.0 Ag 2 CrO 4 -GO 250 20 Xe n.a. 100 150 n.a. n.a. ( Fan et al., 2020 ) 

0.5 5.0 BiVO 4 /TiO 2 0.5 10 15 W LED n.a. 98 90 n.a. n.a. ( Jafari et al., 2020 ) 

( continued on next page ) 
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Table 1 ( continued ) 

Concentration / 

ppm 

pH Photocatalyst Dose / 

g L −1 

Volume / 

mL 

Light source Irradiance Removal / % Time of 

treatment / 

min 

k 1 / min −1 k / 

min −1 g −1 

Ref 

2 5.0 TiO 2 0.5 20 300 W Xe 0.150 W cm 

−2 10 120 0.0009 ∼0.09 ( Khadgi and 

Upreti, 2019 ) 

2 5.0 ZnFe 2 O 4 0.5 20 300 W Xe (UV filter) 0.150 W cm 

−2 20 120 0.0021 ∼0.21 ( Khadgi and 

Upreti, 2019 ) 

2 5.0 ZnFe 2 O 4 -Ag 0.5 20 300 W Xe (UV filter) 0.150 W cm 

−2 40 120 0.0046 ∼0.46 ( Khadgi and 

Upreti, 2019 ) 

2 5.0 ZnFe 2 O 4 -/rGO 0.5 20 300 W Xe (UV filter) 0.150 W cm 

−2 55 120 0.007 ∼0.7 ( Khadgi and 

Upreti, 2019 ) 

2 5.0 ZnFe 2 O 4 -Ag/rGO 0.5 20 300 W Xe (UV filter) 0.150 W cm 

−2 100 90 0.0515 ∼5.15 ( Khadgi and 

Upreti, 2019 ) 

0.45 5.7 TiO 2 -G-NiFe 2 O 4 1 n.a. 2 × 15W Fluorescent 7.81 × 10 −5 W cm 

−2 100 300 7.8 × 10 −3 n.a. ( Pelaez et al., 2013 ) 

0.5 5.7 SNC-TiO 2 0.5 10 2 × 15W Fluorescent 1.33 × 10 −3 W cm 

−2 80 300 ∼2.5 × 10 −3 ∼0.5 ( Zhang et al., 2014a ) 

0.2 5.7 Nanodiamond-TiO 2 0.5 10 Xe 300 W 47.1 × 10 −3 W cm 

−2 100 20 4.4 × 10 −1 ∼88 ( Sampaio et al., 2015a ) 

0.2 5.7 TiO 2 0.5 10 Xe 300 W 47.1 × 10 −3 W cm 

−2 100 120 2.8 × 10 −2 ∼5.6 ( Sampaio et al., 2015a ) 

10 5.7 N-TiO 2 0.2 n.a. 4 F15W/T8 black tubes 71.7 × 10 −3 W cm 

−2 96 20 ∼1.8 × 10 −1 n.a. ( Triantis et al., 2012 ) 

10 5.7 TiO 2 P-25 0.2 n.a. 4 F15W/T8 black tubes 71.7 × 10 −3 W cm 

−2 100 12 ∼4.6 × 10 −2 n.a. ( Triantis et al., 2012 ) 

0.5 5.8 S-TiO 2 n.a. n.a. 2 × 15W Fluorescent 9.05 × 10 −5 W cm 

−2 75 300 ∼2.3 × 10 −3 n.a ( Han et al., 2014 ) 

0.5 5.8 SNC-TiO 2 0.5 10 2 × 15W Fluorescent 1.33 × 10 −3 W cm 

−2 100 300 9.5 × 10 −3 ∼2 ( El-Sheikh et al., 2014 ) 

0.5 5.8 α-Fe 2 O 3 / γ -Fe 2 O 3 

nanopowders 

0.5 10 2 Cole-Parmer 15-W 

fluorescent 

3.99 × 10 −4 W cm 

−2 60 300 ∼1.4 × 10 −3 ∼0.28 ( Han et al., 2017 ) 

10 5.8 TiO 2 P-25 0.2 5 4 F15W/T8 black tubes 71.7 × 10 −6 W cm 

−2 100 10 ∼4 × 10 −1 ∼40.2 ( Fotiou et al., 2016 ) 

3.1 5.9 Bi 3 Nb 0.6 Ta 0.4 O 7 1.5 100 200W Dy LAMO n.a. 92 240 n.a. n.a. ( Zhang et al., 2009 ) 

0.1 7.0 TiO 2 -P-25/ H 2 O 2 films 2400 1700 W air-cooled Xe arc 500 W m 

−2 100 100 n.a. n.a. ( Pinho et al., 2015b ) 

Sunlight 

10 4.0 C/N/S-TiO 2 0.4 40 SOL1200 20 × 10 −3 W cm 

−2 100 60 0.11 ∼6.9 ( Light and Using, n.d. ) 

0.1 6.0 TiO 2 0.2 n.a. Sun 500 lux 100 360 n.a. n.a. ( Pinho et al., 2015a ) 

50 n.a. AgBr/Ag 3 PO 4 /TiO 2 0.1 30 Simulated solar lamp 4 W m 

−2 96 60 0.64 n.a. ( Wang et al., 2015 ) 

0.5 6.0 TiO 2 –

Graphene@Fe 3 O 4 

0.5 20 Sun n.a. 93 50 n.a. n.a. ( Liang et al., 2014 ) 

11
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Table 2 

Operational conditions for and catalytic performance of the photodegradation of CYNs. 

Concentration 

/ ppm 

pH Photocatalyst Dose / 

g L −1 

Volume / 

mL 

Light source Irradiance Removal / 

% 

Time of 

treatment 

/ min 

k 1 / min −1 k / 

min −1 g −1 

Ref 

UV- driven photocatalysts 

0.1 4.0 TiO 2 P-25 0.1 n.a. UV 17.5 × 10 −6 W 

cm 

−2 

100 5 9.4 × 10 −1 n.a. ( Senogles et al., 2001 ) 

0.1 4.0 TiO 2 

Hombikat 

0.1 n.a. UV 17.5 × 10 −6 W 

cm 

−2 

95 15 2.1 × 10 −1 n.a. ( Senogles et al., 2001 ) 

4 4.0 TiO 2 P-25 0.1 30 Hg (blazed at 

350 nm) 

1.12 × 10 6 

photons s −1 

cm 

−3 

100 10 8.7 × 10 −1 ∼290 ( Chen et al., 2015 ) 

Visible light- driven photocatalysts 

10 5.7 TiO 2 P-25 0.2 5 4 F15 W/ T8 

black tubes 

71.7 × 10 −6 W 

cm 

−2 

100 15 n.a. n.a. ( Fotiou et al., 2015 ) 

10 5.7 TiO 2 P-25 0.2 5 Oriel AM1.5 G 85 × 10 −3 W 

cm 

−2 

100 30 n.a. n.a. ( Fotiou et al., 2015 ) 

10 5.7 TiO 2 P-25 0.2 5 Photomax (435 

nm cut-off

filter) 

107 × 10 −3 W 

cm 

−2 

10h 5 n.a. n.a. ( Fotiou et al., 2015 ) 

10 5.7 Kronos vlp-7000 0.2 5 4 F15 W/ T8 

black tubes 

71.7 × 10 −6 W 

cm 

−2 

100 40 n.a. n.a. ( Fotiou et al., 2015 ) 

10 5.7 TiO 2 P-25 0.2 5 Oriel AM1.5 G 85 × 10 −3 W 

cm 

−2 

100 120 n.a. n.a. ( Fotiou et al., 2015 ) 

10 5.7 TiO 2 P-25 0.2 5 Photomax (435 

nm cut-off

filter) 

107 × 10 −3 W 

cm 

−2 

25 600 n.a. n.a. ( Fotiou et al., 2015 ) 

10 5.8 TiO 2 P-25 0.2 5 4 F15 W/ T8 

black tubes 

71.7 × 10 −6 W 

cm 

−2 

100 10 2.1 × 10 −1 ∼360 ( Fotiou et al., 2015 ) 

0.07 7.0 TiO 2 P-25 

H 2 O 2 (25 mg/L) 

films 2400 1700 W Xe arc 500 × 10 −3 W 

cm 

−2 

100 n.a. n.a. n.a. ( Pinho et al., 2015b ) 

0.4 7.0 TiO 2 0.25 n.a. 2 Fluorescent 

(310–720 nm) 

2.37 × 10 −3 W 

cm 

−2 

100 15 ∼1.8 × 10 −1 n.a. ( El-Sheikh et al., 2017 ) 

0.4 7.5 TiO 2 0.5 10 2 × 15W 

Fluorescent 

2.4 × 10 −6 W 

cm 

−2 

100 10 ∼1.8 × 10 −1 ∼36 ( Zhang et al., 2014a ) 

Sunlight 

0.07 7.0 TiO 2 0.1 n.a. Solar 

irradiation 

50 × 10 −3 W 

cm 

−2 

50 360 n.a. n.a. ( Pinho et al., 2015a ) 
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13 
re governed by the solution’s pH ( Henderson, 2011 ; Thiel and 

adey, 1987 ). The pH at which the net surface charge of photocat- 

lysts becomes neutral is called the isoelectric point (IEP) or point 

f zero charge (pH pzc ). The pH pzc depends on the intrinsic na- 

ure of the semiconductor material being used and its composition 

 Gaya and Abdullah, 2008 ; Haque and Muneer, 2007 ; Lee et al.,

016 ; Mrowetz and Selli, 2006 ). For example, TiO 2 - based pho- 

ocatalysts present pH pzc of ∼6.2. Whereas, ZnO-based materials 

ave a higher pH pzc close to ∼ 9.0. For metal-oxides (MOH) with 

redominantly oxygen terminated groups, the net surface charge 

f photocatalysts is positive in solutions with pH below pH pzc 

ince terminal groups are protonated and positively charged as 

educed from Eq. (6) . Conversely, surface is negatively charged 

n solution with pH higher than the pH pzc since terminal groups 

re deprotonated according to reaction (7) ( Gaya and Abdul- 

ah, 2008 ; Haque and Muneer, 2007 ; Lee et al., 2016 ; Mrowetz and

elli, 2006 ). 

OH + H 

+ ↼ ⇁ 

MOH 

+ 
2 pH < p H pzc (6) 

OH 

↼ ⇁ 

MO 

− + H 

+ pH > p H pzc (7) 

Surface charge of photocatalyst nanoparticles generates electro- 

tatic repulsion between them which enhances their stability in 

lurries. At pH close to the pH pzc value in which surface is not- 

harged, nanoparticles may tend to agglomerate. It is observed 

hat suspended particles become larger in diameter due to forma- 

ion of flocs, which minimizes available surface area and photo- 

atalytic efficiency for a given mass of catalyst ( Gaya and Abdul- 

ah, 2008 ; Haque and Muneer, 2007 ; Lee et al., 2016 ; Mrowetz and

elli, 2006 ). 

Solution pH has a direct influence on the speciation of cyan- 

toxins. The ratio of the different charged and non-charged species 

s determined by the respective pK a values of each cyanotoxin. 

ignificant differences on pK a can be seen in Table 4 between 

he main cyanotoxins: (i) MCs, (ii) CYN, and (iii) anotoxin-a 

 Antoniou et al., 2008a ; De Maagd et al., 1999 ; Pinho et al., 2015b ).

The interplay between target cyanotoxin speciation and surface 

harge are instrumental in photocatalysis. Heterogeneous processes 

ccur at the interface of the catalyst and are governed by the 

ass transfer of species from/towards the catalyst surface. As dis- 

ussed previously, the adsorption of cyanotoxins (or at least close 

nteraction with the surface) is essential to ensure effective degra- 

ation. Fig. 6 illustrates the critical impact of pH on the photo- 

atalytic degradation kinetics of MC-LR under identical conditions 

 Pinho et al., 2015b ). It can be observed that complete abatement 

s attained in short treatment times at acidic pH (i.e., pH = 3.0) 

ut drastically decreases at higher pH conditions. Under acidic 

onditions, TiO 2 surface remains positively charged, which enable 

lectrostatic attraction of zwitterionic and negatively charged MC- 

R species. Noteworthy is the transition zone between acidic pH- 

H pzc in which MC-LR degradation is still competitive and occurs 

ithin natural pH range. When increasing pH above TiO 2 pH pzc 

f ∼6.2, a complete transition towards negatively charged sur- 

ace occur, whereas MC-LR speciation remains negatively charged 

 Antoniou et al., 2009 ; Feitz et al., 1999 ; Yang et al., 2020 ). Under

uch conditions, electrostatic repulsion hinders adsorption and de- 

reases photocatalytic degradation performance. These noticeable 

ifferences on MC-LR degradation in function of pH impelled re- 

earches to focus their studies on MCs degradation at acidic pH. 

pplication of these conditions to treat natural waters (pH 5.0-8.0) 

ould require acid addition prior treatment, followed by base neu- 

ralization prior release of treated effluent. However, compromise 

olutions to treat large volumes of natural water may be required 

hen translating technology towards true environmental remedia- 

ion. 
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Table 4 

Dominant species of cyanotoxins at different pH. 

Cyanotoxin Dissociation constants pH Dominant species Net charge of cyanotoxin 

MC-LR pK a1 = 2.09 

pK a2 = 2.19 

pK a3 = 12.48 

pH < 2.09 (COOH) 2 (NH 2 
+ ) positive 

2.09 < pH < 2.19 (COO 

−)(COOH)(NH 2 
+ ) neutral 

2.19 < pH < 12.48 (COO 

−) 2 (NH 2 
+ ) negative 

pH > 12.48 (COO 

−) 2 (NH 2 ) negative 

CYN pK a = 8.8 pH < 8.8 (OSO 3 
−) (CH 5 N 3 

+ ) neutral 

pH > 8.8 (OSO 3 
−) (CH 5 N 3 ) negative 

Anatoxin-a pK a = 9.36 pH < 9.36 (NH 2 
+ ) positive 

pH > 9.36 (NH 2 ) neutral 

Fig. 6. (a) Speciation of MC-LR as a function of pH. Reproduced with permission from reference ( Pinho et al., 2015b ). (b) Effect of pH on the photocatalytic degradation of 

MC-LR using TiO 2 films under UV irradiation at 35 μW cm 

−2 . 

Reproduced with permission from reference ( Antoniou et al., 2008a ). 
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In the case of CYN, the rate of photocatalytic degradation does 

ot usually strongly depend on pH. Based on the pK a of CYN, the 

witterionic toxin is the primary specie at pH values lower than 

.8. In this range of pH, the electrostatic interaction with TiOH 2 
+ 

pH < 6.2) and TiO 

− (pH > 6.2) does not govern the photocatalytic 

erformance ( Chen et al., 2015 ; El-Sheikh et al., 2017 ; Pinho et al.,

015b ; Zhang et al., 2014a ). For TiO 2 or TiO 2 -based photocata- 

ysts, the optimum conditions are expected to be slightly basic or 

lightly acid to prevent the photocatalyst agglomeration. Values of 

H higher than 8.8 may be detrimental, as both photocatalyst sur- 

ace and cyanotoxin are negatively charged. Nevertheless, it should 

lso be noted that research on the topic to date has overwhelm- 

ngly focused on the degradation of CYN only in relatively acidic 

onditions. It is important to remark that photocatalytic degrada- 

ion of CYN performance is insensitive to pH variations within the 

ange of natural waters pH (5.0 -8.0). CYN photocatalytic treat- 

ent can be conducted without requiring pH adjustments for op- 

ration. Meanwhile in the case of anatoxin-a, the optimum condi- 

ions are expected to be neutral and slightly basic—pH values rang- 

ng from 6.2 to 9.4 —due to the stronger adsorption of positively 

harged cyanotoxins on the negatively charged photo-catalyst’s sur- 

ace, hence faster degradation. 

.3. Photocatalyst dosage impacts performance and technology 

ranslation 

Photocatalyst dose for optimal operation is a parameter that is 

horoughly evaluated in research articles. It is obvious that this pa- 

ameter is directly related to capital expenses in terms of the cost 
14 
f semiconductor materials ($ kg −1 ) required for water purifica- 

ion. Indeed, photocatalyst dose impacts competitiveness beyond 

ost of material ( Gaya and Abdullah, 2008 ; Lee et al., 2016 ). The

erformance of heterogeneous processes depends on the availabil- 

ty of catalytic sites and on the total surface area (i.e., higher mass 

oading). However, such a simplistic view disregards effects associ- 

ted to effective light transport. Excessive catalyst doses can cause 

ndesired effects. First, high loading of catalysts can increase so- 

ution opacity and significantly decrease light penetration depth. 

his effect may induce dead zones where catalyst loading will 

ot be photo-activated due light hindering. Second, high mass of 

atalyst in suspension may induce particle aggregation, which di- 

inishes significantly active surface area ( Chatzitakis et al., 2008 ; 

ayat et al., 2011 ; Kositzi et al., 2007 ; Mrowetz and Selli, 2006 ). 

Experimental observations suggest optimum doses of photocat- 

lysts up to 1.0 g L −1 as summarized in Table 1 –3 . Slight differ-

nces may be observed in function of cyanotoxins initial concen- 

ration and the nature of photocatalyst material tested. It is impor- 

ant to remark that such tests are conducted in small volumes of 

ater of few milliliters (ca. 5-20 mL) as summarized in Table 1 –3 .

hotocatalytic treatment of cyanotoxins would be intended in prin- 

iple for environmental remediation of lakes and large volumes of 

ater. For example, the Lake Leman in Switzerland has an esti- 

ated volume of 89 km 

3 . While the and the Lake Michigan in the 

nited States has an even larger volume of 4,918 km 

3 . As a rule of

humb assuming that dosage metrics are independent of the vol- 

me of water to be treated and considering a continuous treat- 

ent to decontaminate lake water, it is clear the huge amount of 

atalyst that may be required and/or the long times required for 
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igh treatment volumes. These are obviously insane numbers that 

ould raise questions regarding catalyst recovery from lakes after 

se. However, providing a big picture on such dimensions allows 

llustrating the need of designing optimized reactors that reuse 

emiconductor photocatalysts to solve a problem with a realistic 

pproach. 

.4. Light source selection and photocatalyst activity 

One of the fundamental elements in photocatalytic processes is 

he delivery of photons of energy required for charge carriers gen- 

ration following reaction (1). Even though often overlooked, se- 

ection of light source impacts photodegradation kinetics and en- 

rgy requirement. Pure photocatalysts of TiO 2 (E g = 3.20 eV) and 

nO (E g = 3.37 eV) present band-gaps photosensitive only in the 

V domain ( Ong et al., 2018 ; Pelaez et al., 2010 ; Pirhashemi et al.,

018 ). Hence, UV-emitting lamps within the range of 270-400 

m such as Xe and Hg lamps are the most common choice 

s irradiation source. Table 5 collects detailed information re- 

arding characteristics of different UV-emitting lamps. To analyze 

he viability of the light source related to photocatalytic activity, 

he critical parameters to consider are energy consumption and 

rradiance. 

On the one hand, energy consumption can be translated into 

he cost associated with photocatalytic treatment. Energy con- 

umption is tightly related to the wattage of the lamp, which read- 

ly highlights Hg and Xe lamps in Table 5 as high-energy intensive 

ources. Engineering figures of merit such as electrical energy per 

rder (EE/O) can provide a comparative magnitude between dif- 

erent lamps, although these are rarely reported for photocatalytic 

reatment of cyanotoxins. The EE/O magnifies the electric energy 

equirement to diminish target pollutant concentration (i.e., cyan- 

toxins) one order of magnitude in a unit of volume as calculated 

rom Eq. (8) for batch or (9) for flow-through operation, respec- 

ively ( Bolton et al., 2001 ; Cater et al., 20 0 0 ): 

E / O 

(
kWh m 

−3 orde r −1 
)
= 

P t10 0 0 

V lg 
(
c i / c f 

) → batch (8) 

E / O 

(
kWh m 

−3 orde r −1 
)
= 

P 

Q lg 
(
c i / c f 

) → flow − through (9) 

Where P is the rated power of the lamp in kW, t is the time

f treatment in h, V is the volume in L, 10 0 0 is a conversion

actor (10 0 0 L m 

−3 ), Q is the flow rate in m 

3 h 

−1 , and lg( c i / c f )

s the decadic logarithm of the concentration decay in one or- 

er of magnitude. Note that the prior equations can be simplified 

hen assuming pseudo first-order decay kinetics as it is defined 

y lg( c i / c f ) = 0.4343 k 1 t . 

On the other hand, irradiance (W m 

−2 ) indicates the power 

f the radiation incident per unit of surface area. Irradiance also 

irectly relates to photon flux (photons m 

−2 s −1 ), which influ- 

nces the kinetics of degradation because photocatalysis is de- 

ermined by the number of photons absorbed on the photo- 

atalyst’s surface. Another important parameter in selecting the 

ight source is spectral irradiance (Wm 

−2 μm 

−1 ), which corre- 

ponds to the irradiance of a surface per unit per wavelength 

or frequency) ( Duran et al., 2010 ; Marks and Doudrick, 2019 ; 

aladés-Pelayo et al., 2015 ). 

As shown in Tables 1 –3 , most studies are centered on the use

f conventional light sources such as Hg and Xe lamps to irradiate 

ommercial TiO 2 Degussa P-25. However, the use of high-pressure 

g and Xe lamps is energetically unsustainable since most of the 
15 
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Fig. 7. (a) Typical normalized spectral of irradiance emitted by high-pressure mercury, low-pressure mercury, xenon, incandescent, fluorescent, halogen, warm white LED, 

and cool white LED lights. 

Adapted with permission from reference ( Kim et al., 2019 ). (b) Normalized spectral of irradiance of the currently available monochromatic LEDs. Adapted with permission 

from reference ( Gustafsson et al., 2013 ). (c) Spectral of irradiance of sunlight above atmosphere on surface of Earth. Adapted with permission from reference ( Nitoda et al., 

2008 ). 
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hotons delivered do not have enough energy for photoexcitation 

 Fig. 7 a ). Unfortunately, the spectral irradiance of other conven- 

ional light sources such as incandescent, fluorescent or halogen 

amps, which can reduce the energy consumption, centers on the 

isible domain. In terms of energy consumption, the use of UV- 

riven photocatalysts is neither energy-efficient nor economically 

iable. The recent addition of LEDs to the water treatment toolbox 

rought alternative non-energy intensive light sources into play 

 Chen et al., 2017 ). Notably, LEDs are mercury-free systems, pro- 

iding a safer and more environmentally friendly source of light. 

onventional UV and UV-visible lamps typically contain 5 to 210 

g of Hg per lamp. Excellent performance has been reported on 

he use of LEDs in the photocatalytic treatment of cyanotoxins. 

or example, based on data reported in Table 1 , using commer- 

ial TiO 2 Degussa P-25, EE/O of 23.5 kW h m 

−3 order −1 and 4361 

W h m 

−3 order −1 was needed when four 1.6-W UV-LEDs and a 

00-W HP Hg lamp were used, respectively. In similar experimen- 

al conditions, the EE/O when UV-LEDs were used was approxi- 

ately 186 times lower. These results highlight how LEDs become 

ore competitive than conventional light sources. However, chal- 

enges remain on how to fully exploit LEDs while enhancing ho- 

ogeneous light distribution in larger scale reactors. The develop- 
16 
ent of light transport frameworks such as radial-emitting optical 

bers show promising perspectives for LEDs/photocatalytic treat- 

ents ( Lanzarini-Lopes et al., 2019 ; Tugaoen et al., 2017 ). More re-

earch on the photocatalytic degradation of cyanotoxins using LED 

echnology is required prior to integrating photocatalyst synthesis 

nd photoreactor design. 

Prior to the appearance of technologies such as LEDs, photo- 

atalytic research roadmap aimed the use of natural sunlight to 

educe operational costs. Solar irradiation is a free and renew- 

ble source of photons. Nevertheless, Fig. 7 c illustrates the low 

ntensity of UV light in the solar spectra ( < 4.0%). The low irradi- 

nce of UV cannot substantially activate photocatalytic response in 

ure semiconductor materials (i.e., TiO 2 , ZnO). To exploit that un- 

apped resource, research efforts focused on the development of 

isible light-driven photocatalysis which harness solar energy as 

nvironmentally benign strategy to promote photocatalysis appli- 

ation. Tables 1 –3 reports visible light active photocatalysts that 

an efficiently remove various cyanotoxins, including MC-LR and 

YN, by using artificial visible light or even direct sunlight. Despite 

f this promising research steps, the complexity of using solar light 

nd designing efficient solar photocatalytic reactors cannot be ig- 

ored. 
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.5. Biomimicry based designs of photocatalysts for improved light 

rapping 

The biomimetism and bioinspiration approach is one of the 

ost promising challenges in materials design and fabrication for 

he coming years. Nature is a true school when it comes to devel- 

ping basic or highly sophisticated materials and systems with im- 

roved properties. Natural structures are already optimized for de- 

ned functionalities and can inspire smart design of more effective 

aterials. Biomimetic materials are artificial human-made materi- 

ls that mimic the characteristics of natural materials. Beyond bio- 

nspired design, biomimetic research also incorporates the princi- 

les of circular and green chemistry to enable a more sustainable 

nd cleaner production of artificial materials ( Sanchez et al., 2005 ; 

errà et al., 2019a ; Wang et al., 2015 ; Zan and Wu, 2016 ). 

In the context of photocatalysis, biomimetism could play an 

mportant role in the coming years for the development of ar- 

hitectures and systems for improved light trapping. Photocata- 

yst synthesis and design should be implemented with the intel- 

igence of the sophisticated architectures and strategies of plants, 

lgae, and photosynthetic bacteria. Photosynthetic organisms ( i.e. , 

lants, algae, and certain types of bacteria) and photocatalysts 

se light as an energy source. However, photosynthetic organisms 

ave developed, throughout centuries, cooperative light-harvesting 

echanisms for the efficient photon capture of solar radiation 

 Qian et al., 2019a ; Serrà et al., 2020a , 2020c , 2019b ; Zhou et al.,

009 ). 

In the context of fixed photocatalysts, fractal and flexible archi- 

ectures have been proved as smart strategies in photocatalyst de- 

ign. As shown in Fig. 8 a , the phototropism mechanism (i.e., self- 

rientation towards the sun throughout the day) of the sunflower 

nspired the design of sunflower-like biomimetic omnidirectional 

rackers. This strategy found that the omnidirectional trackers were 

ble to achieve up to 400% solar energy-harvesting improvement 

ompared with non-phototropism materials at oblique illumination 

ngles ( Qian et al., 2019b ). Natural hierarchical architectures such 

s plants and leaves exhibit excellent multilevel light scattering, 

igh electron-diffusion length, open and accessible porosity, high 

urface-to-volume ratios, and high light absorption independent 

rom the incident light angle. Therefore, mimicking their architec- 

ure and surface properties may result in improved light trapping. 

s shown in Fig. 8 b-c , the porous morphology of artificial N-doped 

nO photocatalysts, inspired in the macro, micro, and nanoscale ar- 

hitecture of green leaves, increases light absorption by 84–131% 

 Zhou et al., 2009 ). As shown in Fig. 8 d , fractal and dendritical ar-

hitectures of ZnO-based photocatalysts mimicking fern leaves can 

rastically improve light harvesting, even at very high angles of in- 

idence ( Serrà et al., 2019b , 2019a ). 

In the context of non-fixed photocatalysts, algae and photosyn- 

hetic bacteria can also play an important role in the development 

f micro- and nano-architectured photocatalysts with improved 

elf-propulsion mechanisms. As shown in Fig. 8 e , the Spirulina 

latensis microalga was used as a biotemplate for the synthesis of 

agnetic biohybrid based on ZnO for the efficient integration of 

olar photocatalytic water decontamination and bioethanol produc- 

ion. The microalgae was selected due to its shape, which has been 

emonstrated effective for harvesting light as well as minimizing 

edimentation and agglomeration ( Serrà et al., 2020a , 2020b ). Sim- 

larly, various shapes and architectures based on aquatic biota can 

nspire the design of new photocatalysts. 

. Decrypting water matrix effects on photocatalytic treatment 

f cyanotoxins 

Cyanotoxins removal in ultrapure water has been a key step- 

tone to advance the understanding of photocatalytic technologies. 
17 
owever, the focus on such unrealistic water matrices may result 

n an overestimation of photocatalysis capabilities based on aca- 

emic hype ( Loeb et al., 2019 ). Evaluation of challenging condi- 

ions, even when showing unfavorable assessment in comparison 

o ideal conditions, will not preclude technology transfer opportu- 

ities. Conversely, realistic water matrix studies contribute to iden- 

ify honest challenges and barriers to overcome. Thus, becoming 

ssential elements to ensure successful translation to higher tech- 

ology readiness levels and actual application. 

Water sources contaminated with cyanotoxins (e.g. lakes, reser- 

oirs, slow-moving rivers etc.) are heterogeneous mixtures of so- 

utes and solids in suspension. Higher concentration of other or- 

anics may compete with cyanotoxins for photogenerated oxidants. 

ost natural waters contain natural buffers that limit versatility 

f easy pH modulation to unrealistic optimum pH conditions re- 

orted in Tables 1 –3 , such as high acidic pH 3.0. Modification of 

atural conditions may arise as a major hindrance when consider- 

ng environmental remediation of lakes. This section discusses how 

hotocatalytic degradation of cyanotoxins is critically influenced by 

haracteristics of the water matrix, including: the presence of nat- 

ral organic matter (NOM), alkalinity, and inorganic ions. 

.1. Critical influence of natural organic matter 

Natural organic matter (NOM) not only derives from the nat- 

ral breakdown of terrestrial plants (allochthonous plants) and as 

yproduct of aquatic biota (autochthonous plants) but may also re- 

ult from human activities. NOM is an extremely complex mixture 

f organic compounds—humic substances, polysaccharides, amino 

ugars, proteins, peptides, lipids, protein, carbohydrates, carboxylic 

cid, amino acid, and hydrocarbons—with varying polarity, acid- 

ty, molecular mass, charge density, and biodegradability ( Sillanpää

t al., 2015 ; Yamamura et al., 2014 ; Zhang et al., 2009 ). Due to

ts complexity, NOM is usually categorized according to its po- 

ar (i.e., hydrophobic and hydrophilic) and acidic (i.e., acidic, neu- 

ral, or alkaline) properties. Of all organic compounds, hydrophobic 

cids, frequently described as humic substances, are the chief con- 

tituents of NOM in bodies of water. Humic substances consist of 

umic acids (HA), which are soluble in alkaline and insoluble in 

cid; fulvic acids, which are soluble in alkaline and acidic condi- 

ions; and humins, which are insoluble in both of those conditions 

 Bhatnagar and Sillanpää, 2017 ; Sillanpää et al., 2015 ). 

Although ubiquitous, NOM occurs to varying degrees depend- 

ng upon the climate, geology, biodiversity, and topography of each 

f Earth’s zones, as well as varies spatially and temporally in con- 

entration and composition. NOM appears in great quantities in 

odies of water worldwide. Concentrations of NOM typically range 

rom 2 to 10 mg L −1 in drinking water; however, its concentra- 

ion is impossible to generalize in natural bodies of water due to 

he hydrological and biogeochemical processes that determine its 

ormation ( Matilainen et al., 2011 , 2010 ; Metsämuuronen et al., 

014 ). For example, in Canada’s rivers and lakes, concentrations 

anging from 3 to 16 ppm are typical, whereas concentrations of 

issolved NOM up to 59 mg L −1 have been detected in northern 

hina’s Lake Hulun, located in the sparsely populated Hulun Buir 

teppe, where minimal direct anthropic effects can be expected 

 Chen et al., 2012 ). In the photocatalytic decontamination of cyan- 

toxins, NOM has to be considered, for it can appear in high con- 

entrations in water sources contaminated with cyanotoxins. 

Humic substances can act as photosensitizers by the absorption 

f sunlight (290 nm – visible light). It has been reported that under 

rradiation humic acids may generate small amounts of reactive 

xygen species (i.e. •OH, H 2 O 2 , etc.). This photoactivation event 

appens about 600 times per hour per humic molecule in mid- 

uropean natural waters during the summer ( Hoigné et al., 1989 ). 

hese natural photolytic effects are very slow and have negligible 
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Fig. 8. (a) Schematic illustration of the of sunflower-like biomimetic omnidirectional trackers ( Qian et al., 2019b ). 

Copyright 2019, Nature publishing group. (b) Cinnamomum camphora leaf from macroscale to nanoscale ( Zhou et al., 20 09 ). Copyright 20 09, Royal Society of Chemistry. 

FE-SEM micrographs of (c) the artificial N-doped ZnO photocatalyst system inspired from Cinnamomum camphora leaf ( Zhou et al., 2009 ). Copyright 2009, Royal Society of 

Chemistry; (d) fern-like bioinspired microleaves of ZnO (scale bar: 5 μm (left) and 1 μm (right)). Reproduced with permission from reference ( Serrà et al., 2019b ); and (e) 

helical hybrid ZnO@ZnS photocatalytic systems inspired from the Spirulina platensis microalga ( Serrà et al., 2020a ). Copyright 2020, Wiley-VCH. 
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ffects on cyanotoxins removal (half lifetime of about 10 h experi- 

entally estimated for MC-RR) ( Welker and Steinberg, 1999 ). Pho- 

ocatalysis, in this regard, is not comparable to photocatalytic treat- 

ent that can degrade MCs in few minutes (see Table 1 ). Indeed, 

o photolytic degradation was observed by Pelaez et al. under visi- 

le light irradiation in presence of humic and fulvic substances but 

n absence of catalyst ( Pelaez et al., 2011 ). 
18 
Yang et al. recently reported an excellent study on the effect of 

OM during photocatalytic treatment of MC-LR by UV/TiO 2 . Per- 

entage of removal of MC-LR after 15 min decreased from 99.9 % 

n ultrapure water to 89.0% and 74.3 % for increasing NOM concen- 

rations of 5 and 10 mg L −1 , respectively. Similar trend is observed 

hen comparing the NOM effect on the kinetic rate decrease from 

.261 min 

−1 at 0.0 mg L −1 of NOM, 0.144 min 

−1 at 5.0 mg L −1 
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Fig. 9. Photocatalytic treatment of solutions containing 5.0 mg L −1 of NOM at pH. 6.5 by UV-LED/TiO 2 photocatalysis with 0.05 g L −1 of TiO 2 under 28.6 mW cm 

−2 : 

(a) Excitation emission fluorescence matrix (EEFM) spectroscopy contours during treatment, (b) NOM mineralization during treatment, and (c) relative speciation of NOM 

remaining TOC in solution at given treatment time. NOM species are classified as low molecular weight acids (LMW-A), low molecular weight neutral species (LMW-N), 

building blocks, and humic acids. 

Adapted with permission from reference ( Yang et al., 2020 ). 
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f NOM, and 0.113 min 

−1 at 10.0 mg L −1 of NOM. These results 

rove the inhibitory effect of NOM that can be associated to differ- 

nt factors such as (i) oxidants scavenging, (ii) nanoparticles aggre- 

ation induced by surface charge neutralization, and (iii) hindering 

f light transport ( Feitz et al., 1999 ; Zhang et al., 2014a ). However,

he scavenging effect is considered to be the governing factor of 

he decrease of photocatalytic performance. 

NOM can act as scavenger of photogenerated 

•OH, which de- 

reases effective degradation of cyanotoxins in solution during 

hotocatalytic treatment. Fig. 9 a shows the excitation emission flu- 

rescence matrix (EEFM) spectroscopy changes during photocat- 

lytic treatment of samples containing 1 mg L −1 of MC-LR and 5 

g L −1 of NOM. EEFM is a sensitive and selective technique that 

rocess data on NOM fractions based on the differences between 

hromophores of dissolved organic matter. The EEFM contour plots 

how a shift on the fluorescence peak ( λex / λem 

= 325/449 nm) to 

horter wavelengths ( λex / λem 

= 325/431 nm) till complete signal 

isappearance after 30 min of treatment. Fig. 9 b shows the TOC 

ecrease of NOM during photocatalytic treatment, attaining 53.6 

 mineralization of initial 5 mg L −1 NOM. The decrease in fluo- 

escence index observed during EEFM analysis reflected a decrease 

n aromaticity during photocatalytic treatment related to the cleav- 
19 
ge of aromatic moieties. These results suggest that high molecular 

raction of NOM is degraded to low molecular weight compounds 

s verified by organic carbon detection chromatography (LC-OCD) 

peciation of organics in solution illustrated in Fig. 9 c . It can be

bserved that the most representative NOM were humic acids with 

lose to a 60 % in content, that is drastically reduced to less than 

.0 % in remaining NOM. Whereas, the content of low molecular 

eight neutral and acid species increase in relative content. All 

hese results demonstrate the scavenging role of NOM and identify 

umic acids as major competitor in the consumption of photogen- 

rated oxidants (i.e., h vb 
+ , •OH) ( Yang et al., 2020 ). 

NOM are complex since scavenging effect is also related to the 

elative content of humic and fulvic acids, as well as the solution 

H. Experimental results of Pelaez demonstrate that photocatalytic 

nhibition is higher with fulvic acid than with humic acid at all 

H conditions (see Table 6 ) ( Pelaez et al., 2011 ). This trend can be

xplained by the higher adsorption of fulvic acids on TiO 2 , which 

esults in the direct competition with cyanotoxins for active sites 

nd surface-generated oxidants. For instance, TiO 2 adsorption in 

ark conditions showed that 5.0 mg L −1 of Suwannee river hu- 

ic acids achieve 30.1 % removal at pH 3.0, 22.5 % removal at pH 

.0, and 16.7 % removal at pH 7.0 after 5 h. Meanwhile higher re- 
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Table 6 

Initial degradation rates of MC-LR after 120 min of visible light photocatalytic 

treatment with NF-TiO 2 . Results show effect of Suwannee river humic acid 

(SRHA) and fulvic acids (SRFA) on degradation kinetics at different initial pH 

( Pelaez et al., 2011 ). 

[NOM] / 

mg L −1 

MC-LR initial reaction rate x 10 −3 ( μM min −1 ) 

pH 3.0 pH 5.0 pH 7.0 

0 3.50 ± 0.02 2.29 ± 0.07 0.54 ± 0.02 

SRHA 5.0 3.49 ± 0.02 2.31 ± 0.07 0.29 ± 0.03 

10.0 3.48 ± 0.05 2.27 ± 0.07 0.26 ± 0.06 

SRFA 5.0 3.20 ± 0.06 2.12 ± 0.11 0.46 ± 0.03 

10.0 3.08 ± 0.06 2.01 ± 0.07 0.31 ± 0.06 
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ovals were attained for 5.0 mg L −1 of Suwannee river fulvic acids 

orresponding to 55.1 % removal at pH 3.0, 32.3 % removal at pH 

.0, and 24.1 % removal at pH 7.0 after 5 h. Interestingly, lower ki- 

etic removal of cyanotoxins is reported at higher pH despite of 

he lower adsorption of NOM (i.e., humic and fulvic acids). Pelaez 

t al. suggested that the coordination complex NOM-TiO 2 can me- 

iate the electron transfer from the conduction band of TiO 2 to 

n appropriate electron acceptor, thus enhancing the stability of 

xidants ( Pelaez et al., 2011 ). This effect would compensate up to 

ome extent the competitive consumption of oxidants by NOM, ex- 

laining the lower decrease observed on cyanotoxins removal rate 

t acidic pH. Whereas the scavenging effect becomes dominant at 

lkaline pH due to the lower adsorption of NOM (lower e cb 
− scav- 

nging effect). These mechanisms require further research to fully 

nderstand the synergistic effect of NOM as electron scavenger. 

Solution pH modifies electrostatic surface charge of the solid 

urface of metal oxides as well NOM speciation. As discussed 

bove, surface of photocatalysts can be neutral, positively or nega- 

ively charged ( Batista et al., 2017 ; Tugaoen et al., 2017 ). The tran-

ition between the different conditions is defined by the isoelec- 

ric point or point of zero charge (pH pzc ). In the case of TiO 2 , the

H pzc is ∼ 6.2. Photocatalyst particles suspended in solutions of pH 

 pH pzc are positively charged, meanwhile in solutions of pH > 

H pzc are negatively charged according to reactions (10) and (11), 

espectively. It has been reported that adsorbed NOM can neutral- 

ze surface charge of photocatalysts, which induce nanoparticles 

ggregation ( Yang et al., 2020 ; Zhang et al., 2014a ). Photocatalyst 

ggregation decreases available catalytic sites and irradiated pho- 

ocatalyst surface, therefore decreasing photocatalytic degradation 

erformance ( Jefferson et al., 2016 ). 

iOH + H 

+ ↼ ⇁ 

TiO H 2 
+ pH < p H pzc (10) 

iOH 

↼ ⇁ 

Ti O 

− + H 

+ pH > p H pzc (11) 

The third detrimental effect of NOM load in water is associated 

o decrease on photon delivery to the photocatalyst surface due to 

indering of light transport from emission source (i.e. solar light, 

amp, LED). Indeed, the photocurrent response of semiconductors 

s directly associated to the number of photons efficiently deliv- 

red per second ( Garcia-Segura et al., 2018 ). Fig. 10 shows the ab-

orption spectra of Suwannee river humic acids and fulvic acids 

 Pelaez et al., 2010 ). It can be seen that both typical NOM com-

onents have high absorption at the UV-visible wavelength range 

200 nm – 400 nm) which will result in the absorption of deliv- 

red photons. Absorption of light by solutes diminish the depth of 

ight penetration reducing photocatalyst activation. Therefore, in- 

rease in NOM concentration can undermine efficient photoexcita- 

ion and diminish generation rate of oxidants. It has been observed 

hat highly active UV radiation activity may be limited to near sur- 

ace layer in eutrophied lakes, especially during algal blooms and 

yses ( De Lange, 20 0 0 ). 
20 
.2. Scavenging effects and synergies of inorganic species 

The content of inorganic species in bodies of water derives pri- 

arily from the weathering and leaching of rocks and soils. How- 

ver, anthropological activities, especially industrial ones, are re- 

ponsible for the discharge of a large number of inorganic species, 

ncluding heavy metals, nitrate, phosphate, perchlorate, and flu- 

rides. Those species are currently considered to be critical pol- 

utants when in excess of permissible limits in bodies of water 

ue to their potential devastating effects upon aquatic biota and 

uman health. The content of inorganic species is significantly 

reater in lakes, reservoirs, ponds, and slow-moving rivers than 

n rivers and streams due to the accumulation of suspended sedi- 

ents caused by the low velocity of the flow of water. In natural 

ater, Na + , K 

+ , Mg 2 + , Cu 

2 + , Fe 3 + , and Ca 2 + cations and Cl −, NO 3 
−,

O 4 
2 −, HCO 3 

−, CO 3 
2 −, and HPO 4 

2 − anions are the most often found

 Nakatani et al., 2011 ; Nikanorov et al., n.d. ). 

The presence of inorganic cations generally exerts few relevant 

ffects upon the photo-oxidation of organic pollutants. Common 

ations (e.g., Na + , K 

+ , Ca 2 + , and Mg 2 + ) in bodies of water can-

ot capture electrons or holes in solutions, because they are all in 

heir highest and most stable states of oxidation. However, insol- 

ble species of divalent cations associated to water hardness may 

recipitate on catalyst surface producing scaling (i.e., undesirable 

rystallization of inert salts on catalyst surface) ( Chong et al., 2015 ; 

ontakke et al., 2011 ). Inorganic scaling can inhibit reactivity due 

o blocking of catalytic sites. Precipitation of inorganic species can 

e promoted on catalyst surfaces due to localized pH changes due 

o heterogeneous photocatalytic reactions ( Bhatkhande et al., 2002 ; 

udlek et al., 2016 ). However, these aspects are seldomly addressed 

n research works that focus on the evaluation of catalysts in single 

se. Other cationic species of anthropogenic origin may be found 

n water samples such as heavy metals. The presence of Cr(VI) and 

u(II) can result in the photoreduction of these species on the cat- 

lyst surface. Depending on the conditions, that phenomenon can 

ynergistically enhance or inhibit the photo-oxidation of organic 

ollutants. Deposition of metals on catalysts surfaces can generate 

etal/semiconductor interfaces that act as electron sinks, which 

inimizes recombination reaction (5) and stabilizes oxidants gen- 

ration ( Beydoun et al., 2002 ; Zhao et al., 2015 ). However, excess 

f these species can inhibit photocatalytic activity due to poison- 

ng of catalytic sites or even act as recombination center. More 

ttention should be given to these uncontrolled effects that are 

ot usually considered in the study of synthetic water matrices. 

n the case of cyanotoxins, the presence of cations slightly affects 

he kinetics of degradation, primarily by reducing the adsorption 

f MC-LR on the photocatalyst’s surface due to their interaction 

ith negatively charged MC-LR molecules ( Antoniou et al., 2010 ; 

inho, 2014 ; Zhao et al., 2015 ). 

The most common inorganic anions in bodies of water (i.e., Cl −

nd HCO 3 
−/CO 3 

2 ) have demonstrated to chemically active species 

n presence of photocatalysts. Herein it is further described the dif- 

erent roles and effects that each individual species may play on 

he photocatalytic degradation of cyanotoxins. 

Chloride is a ubiquitous anion found in the environment in a 

ide range of concentrations ranging between fresh ( < 0.05%), 

rackish (0.05-3%) and saline seawater (3-5 %). Chloride ions can 

e oxidized by hydroxyl radicals as proven by different AOPs yield- 

ng different active chlorine species ( Lu et al., 2005 ; Mostafa et al., 

018 ). Fundamentals of reaction mechanisms of chloride with 

OH were described in the 70s from pulse radiolysis studies, 

hich involves several equilibria described in reactions (12-14) 

 Hasegawa and Neta, 1978 ; Jayson et al., 1973 ). 

OH + C l − ↼ ⇁ 

HOC l •− k = 4 . 3 × 10 

9 M 

−1 s −1 (12) 
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Fig. 10. UV-vis absorbance spectra of fulvic acid and humic acid as representative natural organic matter components. 

Adapted with permission from reference ( Pelaez et al., 2011 ). 
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OC l •− + H 

+ ↼ ⇁ 

H 2 O + C l • k = 2 . 1 × 0 

10 M 

−1 s −1 (13) 

 l • + C l − ↼ ⇁ 

C l 2 
−•

k = 2 . 1 × 10 

10 M 

−1 s −1 (14) 

Non-radical chlorine species can be formed from the dimeriza- 

ion of Cl • radical according reaction (15) or through redox reac- 

ion (16) of Cl 2 
−• radical. In the case of photocatalysis, chloride 

an be directly oxidized by direct charge transfer processes on the 

atalyst surface following reaction (17). Then, chlorine dispropor- 

ionate yielding hypochlorite by reaction (18), which is in acid-base 

quilibria (19) with hypochlorous acid. It is important to remark 

hat chlorine radical can be generated through UV/chlorine process 

hen using UV irradiation through reaction (20) and (21) with re- 

orted quantum yields above 1.0. The quantum yields of HClO and 

lO 

− at 254 nm ranged from 1.4 to 1.7 and from 1.1 to 1.4 mol

s −1 , respectively. Conversely, at 200–350 nm, they ranged from 

.3 to 4.1 mol Es −1 for HClO and from 1.4 to 2.1 mol Es −1 for ClO 

−

 Watts et al., 2007 ; Watts and Linden, 2007 ). Thus, these reactions

re expected to have significant relevance when photocatalytic op- 

rational conditions rely on the use of UV lamp sources. 

C l • → C l 2 (15) 

 l 2 
−•→ 

→ C l 2 + e − (16) 

C l − → C l 2 +2 e − (17) 

 l 2 +2O H 

− → Cl O 

−+C l −+ H 2 O (18) 

ClO 

↼ ⇁ 

Cl O 

− + H 

+ → p K a = 7 . 5 (19) 

OCl + h ν → C l •+ 

•OH (20) 

C l −+h ν → C l •+ O 

•− (21) 

The reactions described above can consume photogenerated 

OH and h VB 
+ , but the contribution of active chlorine species on 

yanotoxins abatement cannot be neglected. Despite their lower 

xidation capabilities when compared to •OH radical (E °= 2.80 

 vs SHE), active chlorine species are still strong oxidants that 
21 
uickly react with organics ( Lei et al., 2019 ). The standard reduc- 

ion potential of the different active chlorine species involved in 

bove mechanisms can be classified in decreasing order of oxida- 

ive power as follows: Cl • (E °= 2.55 V vs SHE) > Cl 2 
−• (E °= 2.13 V

s SHE) >>> HClO (E °= 1.49 V vs SHE) > Cl 2 (E °= 1.36 V vs SHE)

> ClO 

− (E °= 0.89 V vs SHE). The competitive aspect of those ox- 

dants is that they are not limited by mass transfer due to their 

omogeneous character. Yang’s group demonstrated that the for- 

ation of reactive chloride species contributes to attain signifi- 

ant removal of MC-LR in a UV–chlorine system ( Chuang et al., 

017 ; Zhang et al., 2019a ). Zhang et al. concluded that the reactive

hlorine species attack the conjugated dienes in MC-LR by react- 

ng selectively with electron donors ( Sun et al., 2018 ; Zhang et al.,

019b ). The participation of reactive chlorine species in the degra- 

ation of MC-LR during photoelectrocatalytic degradation using 

iO 2 -based photocatalysts was also demonstrated ( Fraga et al., 

0 09 ; Shi et al., 20 05 ). Nevertheless, thorough studies on the ef-

ect of chloride ion during cyanotoxins photocatalytic degradation 

ave yet to be conducted. Special attention should be given to pos- 

ible yield of chlorinated organics and disinfection by-products. 

Also common in bodies of water are bicarbonate and carbon- 

te. The speciation of carbonates in natural waters is defined by 

heir in acid-base equilibria according reactions (22) and (23). Bi- 

arbonate, carbonate and hydroxide ions are the main species re- 

ponsible for alkalinity in water. Water alkalinity is a crucial wa- 

er quality parameter that indicates the buffering capacity of wa- 

er (i.e., the capacity to resist changes in the pH). Alkalinity is 

sually measured in parts per million of the equivalent carbon- 

te ions ( Jefferson et al., 2016 ; Olivo-Alanis et al., 2019 ). Bicarbon-

te and carbonate anions react with hydroxyl ions to form car- 

onate radicals following reactions (24) and (25), respectively. Car- 

onate radicals pose a significantly lower redox potential (E °= 1.78 

 vs SHE) than hydroxyl radicals (E °= 2.80 V vs SHE) ( Liu et al.,

016 ). Thus, these weaker oxidants decrease the overall efficiency 

f the photocatalytic degradation of cyanotoxins. Carbonates in- 

ibit the photodegradation of cyanotoxins and other organic com- 

ounds due to their strong scavenging activity for hydroxyl radi- 

als. Figure 11 shows that the initial reaction rate of the degrada- 

ion of MC-LR under a visible light-activated TiO 2 is dramatically 

ffected by the presence of carbonates ( Pelaez et al., 2011 ). First, 

t can be inferred that speciation depending on pH is one of the 

ey aspects of alkalinity inhibition. It can be observed that at given 

oncentration of 50 mg L −1 of Na 2 CO 3 at pH 7.1, the photocatalytic 
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Fig. 11. (a) Effect of alkalinity at different Na 2 CO 3 concentrations on the photocatalytic degradation of 500 μg L −1 of MC-LR in ultrapure water using visible light irradiation 

(irradiance 7.8 × 10 −5 W cm 

−2 ) on doped NF-TiO 2 . Influence of pH conditions is also depicted showing differences between pH 7.1 of buffered solutions and pH 10.3. (b) 

Speciation diagram of carbonate species in function of the pH. 

Adapted with permission from reference ( Pelaez et al., 2011 ). 
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egradation of MC-LR was not statistically different from the blank 

xperiments conducted in absence of Na 2 CO 3 . Conversely, identi- 

al concentration of 50 mg L −1 of Na 2 CO 3 at pH 10.3 resulted 

n complete inhibition of photocatalytic removal of MC-LR. This 

rend is explained by the stronger scavenger activity of carbon- 

te that reacts with 

•OH according (25) with a kinetic constant 

 k = 8.5 × 10 6 M 

−1 s −1 ) two order of magnitude higher than bicar-

onate (k = 8.5 × 10 6 M 

−1 s −1 ). Second, the increasing concentra- 

ion of carbonate/bicarbonate ions has a detrimental effect on MC- 

R degradation kinetics. Despite the negligible effect observed at 

H 7.1 for 50 mg L −1 of Na 2 CO 3 with a degradation rate of MC-LR

f 0.54 × 10 −3 μM min 

−1 , inhibition due to •OH scavenging was 

bserved at higher Na 2 CO 3 concentrations. Thus, doubling content 

f Na 2 CO 3 to 100 mg L −1 of Na 2 CO 3 decelerates degradation rate 

y ca. 35% down to 0.34 × 10 −3 μM min 

−1 . Further addition of al-

alinity reaching 150 mg L −1 of Na 2 CO 3 slows down degradation 

ate by 80% to 0.09 × 10 −3 μM min 

−1 . These results agree with the

rends observed for other specific scavengers of •OH and identify 

ater alkalinity as one of the major hindrances for photocatalytic 
b

o

22 
pplication in natural waters ( Pelaez et al., 2011 ). 

 2 C O 3 ↼ ⇁ 

HC O 3 
− + H 

+ p K a = 6 . 4 (22) 

C O 3 
− ↼ ⇁ 

C O 3 
2 − + H 

+ p K a = 10 . 2 (23) 

OH + HCO 

−
3 → CO 

•−
3 + H 2 O k = 8 . 5 × 10 

6 M 

−1 s −1 (24) 

OH + CO 

2 −
3 → CO 

•−
3 + O H 

− k = 3 . 9 × 10 

9 M 

−1 s −1 (25) 

Studies have demonstrated that not only ionic strength, but also 

atural organic matter and pH are some of the primary factors 

overning the surface charge of photocatalysts ( Borgnino, 2013 ; 

rown et al., 1997 ; Hu et al., 2010 ; Zareei et al., 2019 ). The sta-

ility and aggregation kinetics of photocatalysts have important 

ffects on the adsorption of cyanotoxins and their photocatalytic 

egradation. The DLVO (Derjaguin, Landau, Verwey, and Overbeek) 

heory is normally used to explain the stability and aggregation 

ehavior of particles in aqueous environments. Based on this the- 

ry, the total interaction energy (W ) is the sum of Lifshitz/Van 
T 
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Table 7 

Physicochemical properties of water from Lake Erie and St. John’s 

river ( Pelaez et al., 2011 ). 

Lake Erie St. John’s river 

pH 8.25 7.40 

Total alkalinity (mg CaCO 3 L −1 ) 89.6 117.8 

Total hardness (mg L −1 ) 94 110 

Turbidity (NTU) 0.12 0.23 

Conductivity (mS) 572 873 

UV 254 0.04 0.17 

TOC (mg L −1 ) 2.55 9.49 
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er Waals forces (W LW 

) and the electrical double layer interac- 

ions (W EL ) between particles. However, other non-DLVO forces, 

uch as hydration, steric effects, and hydrophobic forces, can also 

ramatically affect the interaction between particles. Variations in 

he ionic strength govern the range of the double-layer interac- 

ion and contribute to the modification of the particles’ effective 

harge ( Schwegmann et al., 2013 ; Zareei et al., 2019 ). The Debye-

ückel thickness can be decreased by increasing the ionic strength. 

onsequently, the electrostatic repulsion weakens. Increased ionic 

trength translates to decreased columbic contribution, which in- 

uces particles aggregation. The aggregation of suspended photo- 

atalysts is detrimental for photocatalytic performance since sub- 

tantially decreases the active surface area available as interface for 

he photocatalytic reaction with cyanotoxins. Moreover, larger par- 

iculates obstruct light transport diminishing the extent photoexci- 

ation reaction (1). The effect of total dissolved solids in water ma- 

rices require further attention since it may deviate behavior from 

deal conditions in ultrapure water. 

.3. Treatment of natural water samples 

Senogles et al. conducted the first evaluation of photocatalytic 

reatment performance in natural water samples collected from 

orth Pine Dam raw water (South East Queensland, Australia). This 

atural resource has typical concentrations of < 20 μg L −1 of CYN, 

ith spikes of concentration reaching levels of 70 μg L −1 due to 

lgal blooms ( Senogles et al., 2001 ). Natural and synthetic water 

amples were treated using TiO 2 -P25 doses of 0.1 g L −1 under UV 

ight (irradiation dose 50 0 0 μW s cm 

−2 ). Reported half-lives in- 

icate faster abatement of CYN in real water samples (t 1/2 = 4.4. 

in) than in ultrapure water samples (t 1/2 = 16.5 min). These re- 

ults were associated to the synergistic role of inorganic species in 

e.g., chlorine active species generated from chloride) solution as 

escribed above, which suggest high competitivity of photocataly- 

is as water treatment technology to minimize the impact of cyan- 

toxins in raw water sources ( Senogles et al., 2001 ). 

Conversely, deleterious effects were observed on the treatment 

f 1.0 μM CYN spiked in real water samples collected from East 

ort Lake and Toledo Water Plant (Ohio, USA). While TiO 2 treat- 

ent under UV irradiation in synthetic water reported kinetic rate 

onstants of CYN abatement of 33.0 × 10 −2 min 

−1 , the kinetic rate 

ramatically decreased down to 1.9 × 10 −2 min 

−1 (East Fort Lake –

.1 mg L −1 of TOC) and 4.59 × 10 −2 min 

−1 (Toledo Water Plant –

.2 mg L −1 of TOC). The reduction of performance of over 10-fold 

as ascribed to the scavenging effects of NOM and other water 

atrix components ( Zhang et al., 2014a ). 

Dionysiou’s group reported a complete study on the perfor- 

ance of visible-active photocatalyst in real water samples. Natu- 

al waters were collected from Lake Erie (Ohio, USA) and St. John’s 

iver (Florida, USA), which have reported increasing episodes of 

yanobacterial blooms over the last decade. Fig. 12 depicts the 

ormalized abatement of MC-LR by photocatalysis under visible 

ight using a nitrogen and fluorine doped TiO 2 (NF-TiO 2 ) in dif- 

erent water matrix ( Pelaez et al., 2011 ). Dotted lines illustrate re- 

oval trends of lab-made solutions in ultrapure water (i.e., no ma- 

rix effects) that show a clear dependence of pH on performance, 

s discussed in previous sections. Complete abatement of MC-LR 

as attained after 3h of treatment at pH 3.0, while a discrete re- 

oval of 15.2 % was observed at pH 8.0. This is of high relevance

iven the natural pH conditions of the water samples of pH 7.0 

8.5 (see water characteristics in Fig. 12 ). Null degradation was 

eported for the visible photocatalytic treatment in real water ma- 

rices. The low performance can be explained by surface interac- 

ion and competitive phenomena involving solutes in natural wa- 

ers such as the high content of NOM ranging between 2.5- 9.5 mg 

 

−1 of TOC ( Pelaez et al., 2011 ). Conversely, Fig. 12 shows that pho-
23 
ocatalytic treatment under solar irradiation attains high degree of 

C-LR degradation due to the contribution of the UV component. 

reatment of Lake Erie samples and St. John’s river attained 95.3 % 

nd 86.9 % removal, respectively. Slight differences can be justified 

y the higher scavenger character of St. John’s river water matrix 

hat contained a higher load of NOM and alkalinity (see Table 7 ) 

hich diminished the degradation ate of MC-LR. 

Even though the promising premises of sustainable character of 

isible photocatalysts, these cannot achieve cyanotoxins removal in 

atural water samples. This is a critical conclusion that should re- 

efine research efforts towards development of engineering strate- 

ies that maximize light delivery and exploitation of UV irradiation 

or cyanotoxins remediation. 

. Significance of photocatalytic reactor design for technology 

ranslation 

Photocatalysis was proven to be an effective technology for 

yanotoxins abatement even in natural water sources. Research in 

mall batch reactors of 5 mL – 20 mL (see Tables 1 –3 ) was es-

ential to develop (i) fundamental understanding of photocatalysis 

apabilities, (ii) degradative pathways elucidation, and (iii) break- 

hroughs on materials development. However, research focus at 

his low technology readiness level may be missing the big pic- 

ure problem required to address cyanotoxins global challenges 

see Fig. 1 ). 

Translation of photocatalytic technologies should consider treat- 

ent of large volumes of water. In this frame, strategies to tackle 

he environmental problem of cyanotoxins should distinguish be- 

ween two points of action that would condition engineering de- 

isions for reactor design and photocatalyst material selection: (i) 

reatment of lakes, or (ii) detoxification of water sources for drink- 

ng purposes at point-of-entry/point-of-use. 

The value proposition for the treatment of lakes with high 

oncentration of cyanotoxins envisions the use of solar light ac- 

ive photocatalysts, which will reduce operational expenses associ- 

ted to lamp sources ( Jo and Tayade, 2014 ; Natarajan et al., 2011 ;

e et al., 2018 ). Even though the resulting reduction on electrical 

nergy per order (EE/O) requirements is a high promise, the de- 

loyment of the treatment is still a major engineering challenge. 

he treatment of large volumes of semi-stagnant water in lakes by 

hotocatalytic treatment of lakes is an unreachable horizon given 

he actual state of the art ( Loeb et al., 2019 ). It is obvious that

prinkling lakes with photocatalyst nanoparticles at doses of grams 

er liter cannot be considered feasible. Environmental risks and 

oncerns arose from fate and transport of nanoparticles as well as 

rom their sedimentation ( Andy et al., 2008 ; Petosa et al., 2010 ).

eyond catalyst sedimentation, photocatalyst performance can be 

eriously undermined by limited light transport through lake wa- 

er bodies. Safe implementation of nanotechnology for environ- 

ental applications may require controlled systems to tackle these 

ngineering challenges ( Friehs et al., 2016 ; Haynes et al., 2017 ; 

agner et al., 2011 ). Passive treatment systems that use supported 

atalyst have recently appeared as a promising strategy for the case 

cenario of lakes and reservoirs. Floating nanocomposite photocat- 
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Fig. 12. Photocatalytic degradation of 500 μg L −1 MC-LR in ultrapure water and natural water matrix from Lake Erie and St. John’s river at the pH given in the table using 

visible (irradiance 7.8 × 10 −5 W cm 

−2 ) or solar light irradiation (irradiance 9.5 × 10 −5 W cm 

−2 ) on doped NF-TiO 2 . The side table summarizes natural water characteristics. 

Adapted with permission from reference ( Pelaez et al., 2011 ). 
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lysts can be deployed and easily recovered/reuse after environ- 

ental intervention. These processes, which have been barely ex- 

lored for cyanotoxins, may be an opportunity for the implemen- 

ation of photo-driven cyanotoxins remediation technologies. 

A different case scenario can be observed when detoxification 

f water sources is desired to ensure access to drinking water. 

hotocatalytic detoxification can be implemented to treat collected 

ater in continuous operation mode. Solar-driven treatment can 

enefit of the use of photoreactors that ensure efficient solar radi- 

tion collection and/or concentration. Solar photocatalytic reactors 

im to maximize the usage of solar irradiation. Direct sun irradi- 

tion on conventional flat photoreactors results in severe losses of 

elivered light. In this frame, alternative reactors maximize light 

elivery by concentration in tubular reactors. This is the case of 

ompound parabolic collectors (CPCs) that have a light concentra- 

ion factor close to one (i.e., maximum efficiency). Concentration 

s attained by defining reflector geometry to redirect indirect light 

y reflection into the tubular reactor (see Fig. 13 ) ( Spasiano et al.,

015 ). Engineering design tailoring optimization of light delivery 

llows: (i) diminishing reactor footprint when compared to com- 

ercial flat reactors, and (ii) operation during overcast days due to 

oncentration of indirect sunlight. 

Solar-driven photocatalysis presents benefits as decentralized 

reatments that can operate off grid in developing areas. How- 

ver, the reactor set-ups described above have a great physical-foot 

rint. Moreover, the slower kinetic abatement observed for solar 

ight photocatalysis when benchmarked against UV-photocatalysis 

aises some operational questions. Depending on techno-economic 

onsiderations, it must be more competitive to consider systems 

hat remove cyanotoxins in compact reactors with lower resi- 

ence times, despite of requiring UV-light sources. Reactors that 

se photocatalysts in slurry require post-treatments that separate 

uspended heterogeneous catalysts after treatment. For example, 

ommercially available photo-cat systems of Purifics® depicted in 

ig. 13 implements a patented continuous TiO 2 separation process 

hat allows recapture and reintroduction of catalyst into the inlet 

tream in a closed loop. 

Fluidized-bed reactors are continuous flow systems in which a 

uid (i.e., the water being treated) is circulated at enough velocity 
24 
o maintain particulate solids in continuous suspension. The solid 

articles remain in constant agitation and swirl around through 

he fluidized-bed avoiding their agglomeration, under the so-called 

uidized state. Particles in fluidized state behave as they were flu- 

ds, which improves kinetics of heterogeneous catalytic processes 

uch as photocatalysis. Fluidized bed slurries keep the photocat- 

lysts particles within the expanded bed of the reactor for their 

ontinuous use ( Fang et al., 2019 ; Lee et al., 2004 ; Rincón and La

otta, 2019 ; Shet and Vidya, 2016 ). In other words, catalyst recov- 

ry is not required since fluidized particles do not leave the flu- 

dized bed reactor during operation. These reactors present wide 

pportunity of application at short residence times and can be eas- 

ly modified for simultaneous UV disinfection by defining fluidized- 

ed height (see Fig. 13 ). 

The use of films or deposited photocatalysts is an interesting 

pproach that will prevent issues associated to the recovery of 

anoparticles. Even though the required treatment times may be 

onger than those for slurry systems, several works have demon- 

trated the competitiveness of photocatalytic films on the removal 

f cyanotoxins ( Antoniou et al., 2009 ; Han et al., 2011 ). Slower ki-

etics can be explained by the decrease on available surface area 

nd the noticeable control of the degradation kinetics by mass 

ransfer towards/from the photocatalyst surface ( Espíndola et al., 

019 ; Han et al., 2011 ). However, the development of these static 

ystems provides opportunities for alternative reactor designs. Al- 

ernatives to slurry operation have been explored using catalytic 

onverters as packed bed reactors. The major issue of packed bed 

eactors is associated to photon transport and the possible shad- 

wing effect of surrounding substrates in packed bed or mono- 

ith reactors, which may diminish the irradiated surface. Pinho 

t al. demonstrated that transparent monoliths can outperform 

onventional supports (e.g.., glass spheres, silica, polyvinylchloride 

upports, etc). The high performance of these honeycomb three- 

imensional transparent arrays it attributable to the large spe- 

ific photoactive surface area that can be efficiently irradiated 

 Pinho et al., 2015b ). This can be explained by the reduced shad-

wing effect, as can be deduced from transmittance characteris- 

ics of supports illustrated in Fig. 14 . These engineering approaches 

efine possible pathways for supported photocatalysts reactor de- 
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Fig. 13. (a) Compound parabolic collector photoreactor and light concentration in CPC. Adapted with permission from reference ( Spasiano et al., 2015 ). (b) Commercial 

Photo-cat® reactor from Purifics. (c) Fluidized-bed. photocatalytic reactor. 

Adapted with permission from reference ( Reilly et al., 2017 ). 
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ign that ensure light transport and mass transfer. Another issue 

bserved in deposited photocatalysts systems is the loss of pho- 

ocatalytic performance due to the charge carriers recombination. 

owever, the use of heterogeneous supported systems provides 

 unique framework that may enable photoelectrocatalytic treat- 

ents ( Garcia-Segura and Brillas, 2017 ). The application of a small 

ias potential can enhance the separation between the charge car- 

iers due to the existence of an external electrical field, which 

voids or at least slows down the recombination reaction rate 

 Cerrón-Calle et al., 2019 ). It has been observed that photoelectro- 

atalytic systems can have enhanced performance of film semicon- 

uctors when degrading cyanotoxins ( Liao et al., 2013 ; Zhao et al., 

019 ). 

Previous systems use energy intensive lamps (i.e. mercury 

amps). Advances in UV-light emitting diodes (LEDs) have in- 

reased light output, energy efficiency, durability, and cost com- 

etitiveness ( Chen et al., 2017 ). Integration of LEDs can drastically 

educe physical footprint of photocatalytic reactors and their elec- 

rical energy requirements. Few attempts to implement LEDs have 

aced light delivery as a major engineering challenge ( Hou and 

u, 2013 ; Natarajan et al., 2011 ; O’Neal Tugaoen et al., 2018a ). Light

ransport can be improved with photocatalyst-coated optical fibers 

hat homogeneously distribute light along the coating as illustrated 

n Fig. 15 . Pure optical fibers transport light occurs via internal re- 

ection with negligible refraction losses. When fibers are coated 
25 
ith photocatalysts of refractive index ( n 2 ) higher than the char- 

cteristic value of the optical fiber ( n 1 ), refraction events can de- 

iver light to photoexcite the photocatalyst (i.e. TiO 2 ). Since light 

s delivered through the fiber at the internal interface of the cata- 

yst light losses by absorption of solutes and scattering by solids in 

uspension are avoided, which increases efficient use of photons. 

Despite of all the interesting approaches discussed in this sec- 

ion, photocatalytic treatment of cyanotoxins in water samples at 

eactor scale has been barely studied. Benchmarking and techno- 

conomic analyses have not yet been conducted, therefore engi- 

eering decision factors have not yet been defined. Scaling-up and 

eactor testing can be highlighted as an essential element of the 

esearch roadmap to bridge promising lab scale advances with the 

eed of proofs of concept at higher technology readiness level. This 

an be a niche opportunity for photocatalytic systems translation 

o markets. 

. Conclusions and key insights on challenges and perspectives 

Worldwide, cyanotoxins are recognized as hazardous emerging 

ollutants in water due to their widespread distribution and oc- 

urrence. Even so, due to the limited analytical capabilities, the 

nvironmental challenge posed by cyanotoxins may be more diffi- 

ult than it seems. Worse still, conventional water treatment tech- 

ologies have proven ineffective in removing all cyanotoxins si- 
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Fig. 14. Normalized absorbance spectra measured through different materials used in the packed photocatalytic reactors: ( ) TiO 2 coated glass spheres, ( ) uncoated cel- 

lulose acetate transparent honeycomb structured monolith (CA), ( ) absorbance measured after light passed through first sheet of CA/TiO 2 , ( ) lower absorbance measured 

after light passed through second sheet of CA/TiO 2 . 

Adapted with permission from reference ( Pinho et al., 2015b ). 

Fig. 15. Light delivery mechanism through photocatalyst coated optical fibers. Integration into compact reactors can ensure efficient light transport and enhanced photocat- 

alytic activity. Indices of refraction are denoted: n 1 for the quartz optical fiber and n 2 for the TiO 2 coating. 

Adapted with permission from reference. 
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ultaneously. As a solution, photocatalysis has emerged as promis- 

ng alternative that has shown exceptional effectiveness in remov- 

ng intra- and extracellular cyanotoxins. In addition, fundamental 

tudies have elucidated some intricate degradation pathways of 

yanotoxins (i.e., MC-LR and CYN) and demonstrated the complete 

batement of parent compounds as well as their toxicity. 

Reliance on the use of semiconductor photocatalysts with 

ide band gaps ( i.e. , TiO 2 with E g ∼3.0 eV) require UV- 

rradiation sources. Because conventional UV-light lamps ( e.g. , mer- 

ury lamps and xenon lamps) are energy intensive, researchers 

ave sought to develop doping strategies that can enable photo- 

atalytic response under visible light and solar irradiation. How- 

ver, the ongoing development of LED technology could change 

he paradigm by offering a more cost-effective competitive source 

f light. In the same direction, relevant advances have indi- 

ated that the research roadmap should shift focus from devel- 
w

26 
ping materials to implementing technology at higher levels of 

eadiness. 

Although doping and using nano-composite photocatalysts are 

nteresting approaches to that end, neither strategy has advanced 

he implementation of photocatalytic treatment as expected. In- 

tead, efficient light transport and the improvement of light 

ources have had the most relevant impact in the field. As a re- 

ult, the innovation of material is envisioned to derive from prin- 

iples of biomimicry as a means to enhance selectivity and light 

ransport. Developing materials that emulate natural structures of 

hotosynthetic organisms (e.g., plants and bacteria) could revolu- 

ionize the efficient use of delivered photons. 

Initial hype about photocatalytic treatment was based on out- 

tanding performance under unrealistic lab settings that allowed 

reating small volumes of water with highly energy intensive 

amps. Major challenges were identified in real water matrices, in 

hich degradation kinetics had decelerated due to the presence 
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f scavengers and competing species. Gauging the effectiveness of 

hotocatalysts thus needs to occur to more-realistic environments 

nd consider the influence of natural organic matter and inorganic 

pecies. Further research to improve, even optimize, the photocat- 

lyst performance in complex environments and in large volumes 

s well as mimicking natural water in real-world environments is 

lso urgently needed. Understanding the effects of water matrices 

an aid in strategizing novel materials or at least identifying niche 

pplications of photocatalytic processes. 

Beyond that, the greatest barrier to translating technology is the 

ack of any reactor design that can completely exploit photocataly- 

is in the treatment of large volumes of water (e.g., lakes and reser- 

oirs) polluted with cyanotoxins. Optimized treatment conditions 

or small volumes in batch reactors are mostly unrealistic and in- 

pplicable when considering the true scale of the environmental 

hallenge. Thus, it identifies the development of engineering de- 

igned reactors and treatment strategies to be truly competitive al- 

ernatives. In that sense, reactor design and techno-economic eval- 

ation are truly major hurdles in translating the results of research 

nto practice. Research efforts should be directly toward configur- 

ng benchmark reactors and comparing passive treatment systems 

ith active ones to fully exploit promising photocatalytic treat- 

ents for cyanotoxins remediation. 

Finally, the development of new low-cost doped, wavelength 

argeted catalysts are significant advances that could make pho- 

ocatalytic oxidation more competitive and cost effective. This is a 

eature that can be fully exploited with LED lights as cheap and 

nergy efficient light sources. 
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