BON À SAVOIR: PROCHAINE ÉTAPE APRÈS LA RÉALISATION DE SON PUIT / FORAGE

BON À SAVOIR PROCHAINE ÉTAPE APRÈS LA RÉALISATION DE SON PUITS / FORAGE

L´accès à une eau potable gérée en toute sécurité n´est pas évidente dans les pays en voie de développement et elle est encore plus difficile dans les pays d´Afrique subsaharienne. Cette situation emmène les populations à faire recours aux puits et voire même aux forages pour les mieux nantis afin de s´approvisionner en eau. Comme le dit un adage bien connu « L’eau c´est la vie ». Son goût et sa couleur varient en fonction des minéraux et des éléments biologiques (terres, roches, pierres, feuilles, etc…) rencontrés lors de son trajet dans son milieu naturel. D´où la nécessité absolue de faire des analyses Microbiologiques et Physico-chimiques après la réalisation de son puits / forage. Celles-ci nous permettent non seulement de connaitre avec une certaine exactitude la qualité de l’eau que nous allons devoir consommer, mais aussi d’apporter le ou les traitements appropriés afin d’avoir une eau saine et potable propre à la consommation.

Ce n’est pas parce qu’une eau est claire à vue d’œil quelle est propre à la consommation. Non !!! il n´y a qu´une analyse Microbiologique et Physico-chimique faite en Laboratoire et en respectant les normes nationales et internationales en vigueur pour nous édifier sur la qualité de notre eau.

 

Addressing Limited Access to Clean Water in Rural Communities of Cameroon

Participating in the Implementing Public policy program was a maiden, invaluable and exciting experience that far exceeded my expectations! It was a perfect blend of theory and action learning, arduous yet rewarding! My key learnings from the insightful lectures, course material and wide range of shared experiences were:

  • A transformation from my plan and control-oriented mindset to the Problem Driven Iterative Adaptation (PDIA) approach mindset. It equipped me with tools to identify a complex problem, drive towards change while learning, adapting and iterating. I gained insights on constructing and deconstructing a problem (fishbone diagram), carrying out a triple A (Authority, Acceptance, Ability) change space analysis, identifying an entry point and reflecting on a suitable idea to begin solving the problem.
  • Building teams based on psychological safety and accountability, dependability, structure and clarity, purpose and impact. With narratives that persuade people to get on the teams, they can be fixed as over time. Equal participation, engaging in difficult conversations, openness and vulnerability to talk about challenges in the team creates a highly psychologically safe environment for team members to be productive and yield better outcomes.
  • Rob Wilkinson’s 4 P leadership model of perception, process, projection and people. “Perception” made me willing to accept other views on the same aspect and build curiosity and creativity. “Projection” on its part, fine-tuned my narrative of the future in an optimistic way. As for “Process”, it enabled me to streamline roles in my team while including all members irrespective of their professional level and status. “People” furnished me with ideas on how to manage my emotions and that of those around me since “people may forget what you do for them but they will never forget how you make them feel”.
  • Managing delegation, time and trust. Specifically, I understood that I could not do everything alone; hence I delegated some tasks to other staff I can trust, which allowed me focus on core tasks and become more productive. I was also learned to place multi valuing over multitasking and consistency over intensity.
  • Keeping a learning and leads log or journal to capture my progress and celebrating small wins, will motivate my team to keep moving forward till we arrive at the big win.  Also, authorization can be built from sharing positive results of diligence with those who matter.
  • I gleaned that self-care on the physical, social, mental, spiritual and emotional fronts is vital to reduce burn outs, avoid depression and enhance happiness. As a result, a developed a self-care plan.

During IPP, I initially worked on addressing the challenge of delayed public investment budget execution which is slowing economic growth in Cameroon. I made some small progress by constituting a multidisciplinary team which worked to organize workshops to train 40 officials of the budget execution chain on the program budget and the use of the information system.

However, two months to the end of the course, in keeping with the flexibility of the PDIA approach, I took more interest in addressing a policy challenge that touches directly on the public. Apart from being a committed civil servant, I am a board member of an association – Support Humanity Cameroon (SUHUCAM), a grassroots non-profit Cameroonian Development and Environment association created in 2018. For over 5 years, we have been working in grassroots and semi urban communities in Cameroon, strengthening resilience and effecting Climate Change, enhancing access to sanitation and clean drinking water. We have gotten grants from the Japan water forum and African climate reality project to supply portable water to the “Mbororo” and “Mulafi” communities in the Northwest region. In the quest for natural solutions instead of boreholes, we opted for protecting catchment areas, building reservoirs and installing taps. This gave access to clean water to over 2000 people from 200 households.

In that vein, I convened a meeting with other board members and staff; we brainstormed and decided to work on the challenge of: “Limited access to clean water in rural communities of the North West region of Cameroon” as a hindrance to the attainment of the sixth sustainable development goal of access to clean water and sanitation in the areas. This has led to widespread waterborne diseases, affected the overall sanitary conditions and posed difficulties in handling pandemics like COVID 19.

We then came up with the fishbone diagram presented below, did a triple A analysis of the change space we picked the bones on climate change and insufficient financial resources as entry points. We realized that insufficient funds was due to the inclusion of vital information in grant proposals and we resolved to crosscheck the proposals and withhold important information. This approach recently got the association a G20 Global Land initiative grant of 15,000 dollars for a one year project to protect the “Mbingbo” catchment area, build reservoirs and install taps to supply over 6000 people in a rural community of “Balikumbat Division” of the North West Region. We are also working on an initiative to plant 15,000 trees around the area.

The PDIA approach has completely renovated my perspective in the face of challenges at work and in my personal life. I begin by identifying the problem, breaking it down to the smallest levels and gradually finding ways to solve it while celebrating every positive stride I make in the process.

More so, I intend to maintain a psychologically safe environment for my team by strengthening trust, increasing vulnerability, engaging in acts of kindness and outings. These hitherto were at low levels in my organization.

Prior to my participation in this course, I was struggling with time management through tips like multi-valuing, drafting a to-do list every morning, spending my mornings on MITs, setting a time limit for each task. My level of perfectionism has reduced and I have been able to say no since I cannot please everybody.

With the insight from “people” of the leadership model, I hope to always do an internal audit before reacting to any emotional trigger from my team members or other stakeholders. This will permit me to accommodate more people, improve my network and widen my circle of influence.

I envisage to keep up with weekly team meetings and journaling to keep track of any progress made, in order to stay motivated, happy and productive. I also hope to implement my self-care plan which will allow me relax and let go of anxiety.

To my fellow PDIA practitioners around the world, begin by becoming the change you want to see. Find and keep those with the same change drive as you in your team. Also, the fear of failure is the beginning of failure. Do not be afraid to fail, learn from it, and move forward. Moreover, it is illusionary to think you can produce immediate big results. Think big, act small while focusing on the process and regularly celebrate tiny wins. This will expand your possibility perception and cultivate more success.

Fishbone diagram

Source

Restructuration du secteur de l´eau Potable en Afrique centrale et de l´Ouest Francophone

Restructuration du secteur de l’eau Potable en Afrique Central et de l’ouest francophone

Le présent article nous présente les résultats sur la restructuration du secteur de l’eau potable en Afrique Centrale et de l’Ouest Francophone. Il montre l’état des lieux, les défis et  propose des solutions sur la restructurations du secteur de l’eau potable en Afrique Centrale et de l’Ouest Francophone

WEBINAIRE SUR LES SOLUTIONS ET INNOVATIONS DANS LE SECTEUR WASH MAJI AFRICA

l’article présente les résultats des travaux de recherches dans le secteur du wash de trois jeunes africains à savoir : KOTIE SIDIBE de nationalité Malienne diplômée d’un Master 2 en géomatique, aménagement, gestion des territoires de l’Université des Sciences Sociales et de Gestion de Bamako ; FOUTAMATA MALEBA COULIBALY de nationalité Malienne Etudiante en master Génie Environmental à L’ Eni/ABT de bamako(Mali) et CHARLES TAPALNA de nationalité Nigériane es Master en études stratégiques de l’Université de Maiduguri

L’objectif était d’analyser les différentes solutions et innovations dans le secteur du wash au Mali et au Nigéria. L’approche méthodologique utilisée par les trois chercheurs dans le secteur du wash nous présente les différents modes de collecte des données directe (enquête de terrain, documentation physique) et collecte indirecte (recherche documentaire en ligne). Les résultats de ses travaux se présentent comme suite :

_ s’agissant des travaux de recherche de KOTIE SIDIBE qui sont intitulés :« APPORT DU SIG DANS LA GESTION DES DECHETS D’EQUIPEMENTS ELECTRIQUES ET ELECTRONIQUES DANS LA COMMUNE VI DU DISTRICT DE BAMAKO »

Au total, 274 sites ont été géolocalisés dans les onze (11) quartiers de la commune VI : Banankabougou (36), Dianéguéla (18), Faladié (32), Magnambougou (34), Missabougou (14), Yirimadio (42), Sokorodji (18), Sogoniko (25), Niamakoro (23), Sénou (23), Zone aéroportuaire (9)

Comme solution technologique innovante, elle propose un système d’informations géographique (SIG), un excellent outil pour assurer le suivi de tous les acteurs, les trajets de distributions, la fréquence des grossisses, et d’autre part, une planification du traitement (organisation des acteurs de traitement existante, réalisation de nouveaux emplacements pour les acteurs). Elle propose aussi la mise sur pied, des textes législatifs régulant le domaine de la gestion des déchets électriques au Mali

  • S’agissant des travaux de recherche de FOUTAMATA MALEBA COULIBALY avec pour titre :« APPROCHE DE REDUCTION DES EAUX NON FACTUREES DANS LES SOCIETES D’EAUX (SOMAPEP/SOMAGEP(Bamako) »

Les contrats de concession (SOMAPEP-SA) et d’affermage (SOMAGEP-SA) du réseau de distribution de Bamako devrait être 81%, mais il se situe aux environs de 63% soit 18 points d’écart. Ce qui entraine de nombreuses pertes pour la SOMAGEP-SA. Comme solutions, elle propose la modernisation des systèmes de mesures (compteurs plus précis et télé relevables)

  • S’agissant des travaux de recherche CHARLES TAPALNA donc le titre est :« ÉVALUATION DE L’IMPACT DE LA PARTICIPATION DES FEMMES AU COMITÉ D’EAU, D’ASSAINISSEMENT ET D’HYGIÈNE SUR LES SERVICES DE LAVAGE DURABLES ET MISE EN ŒUVRE DES MEILLEURES PRATIQUES À MAIDUGURI, NIGERIA »

Comme solutions innovantes aux défis rencontrées par les femmes dans les pratiques actuelles au Nigéria en matière d’eau et d’assainissement, d’hygiène, et d’assainissement nous avons la fourniture de pompes à eau fonctionnant à l’énergie solaire, d’unités mobiles de purification de l’eau, promotion de l’hygiène au niveau communautaire, fourniture de kits WASH d’urgence et formation/renforcement des capacités

l’article permettra de renforcer les capacités des jeunes chercheurs et innovateurs dans le domaine de l’eau, de l’assainissement et de l’hygiène en Afrique
Pour plus d’informations veuillez cliquer sur le lien ci-dessous
Partager l’enregistrement du webinaire :
https://us06web.zoom.us/rec/share/0YaNR8CZ_2PeZqiGcbsGsSlPFEx-oEnejutKxWupfX337H4I0m2-Dm0VXhUOw-HX.FuWF_pIO7TTzKTT6
Code secret : 4hk0p8+4

WEBINAR ON SOLUTIONS AND INNOVATIONS IN THE WASH SECTOR MAJI AFRICA

The article presents the results of the research work in the wash sector of three young Africans, namely: KOTIE SIDIBE of Malian nationality with a Master 2 in geomatics, planning, land management from the University of Social Sciences and Management of Bamako; FOUTAMATA MALEBA COULIBALY of Malian nationality Student in Environmental Engineering at Eni/ABT of Bamako (Mali) and CHARLES TAPALNA of Nigerian nationality is Master in Strategic Studies from the University of Maiduguri
The objective was to analyze the different solutions and innovations in the wash sector in Mali and Nigeria. The methodological approach used by the three researchers in the wash sector presents the different modes of direct data collection (field survey, physical documentation) and indirect collection (online documentary research). The results of his work are as follows:
_ Regarding the research work of KOTIE SIDIBE which is entitled: « CONTRIBUTION OF GIS IN THE MANAGEMENT OF WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT IN COMMUNE VI OF THE DISTRICT OF BAMAKO »
A total of 274 sites have been geolocated in the eleven (11) districts of Commune VI: Banankabougou (36), Dianéguéla (18), Faladié (32), Magnambougou (34), Missabougou (14), Yirimadio (42), Sokorodji (18), Sogoniko (25), Niamakoro (23), Sénou (23), Airport Zone (9)
As an innovative technological solution, it offers a geographic information system (GIS), an excellent tool to monitor all the actors, distribution routes, the frequency of grow-ups, and on the other hand, a treatment planning (organization of existing treatment actors, creation of new locations for the actors). It also proposes the establishment of legislative texts regulating the field of electrical waste management in Mali
– Regarding the research work of FOUTAMATA MALEBA COULIBALY with the title: « APPROACH TO THE REDUCTION OF NON-REVENUE WATER IN WATER COMPANIES (SOMAPEP/SOMAGEP (Bamako) »
The concession (SOMAPEP-SA) and leasing (SOMAGEP-SA) contracts for the Bamako distribution network should be 81%, but it is around 63%, i.e. 18 points difference. This leads to many losses for SOMAGEP-SA. As solutions, it proposes the modernization of measurement systems (more accurate meters and remotely readable meters)
– Regarding the CHARLES TAPALNA research work, the title is: « ASSESSING THE IMPACT OF WOMEN’S PARTICIPATION IN THE WATER, SANITATION AND HYGIENE COMMITTEE ON SUSTAINABLE WASHING SERVICES AND IMPLEMENTING BEST PRACTICES IN MAIDUGURI, NIGERIA »
As innovative solutions to the challenges faced by women in current practices in Nigeria in terms of water and sanitation, hygiene, and sanitation we have the provision of solar-powered water pumps, mobile water purification units, hygiene promotion at the community level, provision of emergency WASH kits and training/capacity building
This article will build the capacity of young researchers and innovators in the field of water, sanitation and hygiene in Africa.

Fore more informations please click on this link
Share the webinar recording:
https://us06web.zoom.us/rec/share/0YaNR8CZ_2PeZqiGcbsGsSlPFEx-oEnejutKxWupfX337H4I0m2-Dm0VXhUOw-HX.FuWF_pIO7TTzKTT6
Secret code: 4hk0p8+4

Séchoirs solaires sous serre : Une solution rentable visant à garantir une utilisation sûre des boues de vidange dans l’agriculture

L’utilisation peu judicieuse et à long terme d’engrais chimiques détériore non seulement la qualité des sols, mais elle contribue également aux effets du changement climatique du fait de l’émission de gaz à effet de serre lors de la production et de l’utilisation de ces engrais. Par ailleurs, il est urgent de rechercher d’autres sources de nutriments pour la production alimentaire afin de nourrir la population qui est sans cesse croissante.

Il est de notoriété publique que les excréments humains sont riches en nutriments, surtout en azote et en phosphore. Avec l’accent mis récemment sur le traitement des boues de vidange et l’assainissement géré en toute sécurité, il est possible d’utiliser les excréments humains comme source d’éléments nutritifs. Toutefois, la présence d’agents pathogènes dans les matières fécales suscite des inquiétudes quant aux risques pour la santé. La principale source d’inquiétude concerne les helminthiases transmises par le sol, qui sont très résistantes aux traitements et peuvent perdurer pendant plusieurs années.

C’est dans ce contexte que la présente étude a été menée dans quatre (4) stations de traitement des boues de vidanges (STBV) en Inde – Angul, Dhenkanal, Karunguzhi et Devanahalli – avec pour objectif principal d’évaluer l’efficacité des séchoirs solaire sous serre à base de polycarbonate dans la réduction des œufs d’helminthes présents dans les boues traitées définitives. Les séchoirs solaires sous serre (GHSD) nécessitent un séchage passif pour augmenter la température et réduire l’humidité afin d’assurer la destruction des agents pathogènes et un séchage plus rapide.

Les multiples utilisations de l’eau provenant de systèmes de recharge d’aquifères au Kenya et en Inde

Les « services à usages multiples » (MUS) tiennent compte du fait que les ménages utilisent l’eau tant pour des usages domestiques que pour des utilisations à des fins productives. Le présent article est le premier du genre qui vise à déterminer comment les systèmes de recharge des aquifères gérés (MAR) constituent une forme de services à usages multiples. Deux cas ont fait l’objet d’étude en Inde et au Kenya. Dans le cas du Kenya, les barrages de sable constituent la forme de système de recharge d’aquifères gérés, tandis qu’en Inde, on a recours à des barrages de retenue et des bassins d’infiltration de différentes tailles. Grâce aux observations, aux entretiens et aux données sur la qualité de l’eau, il est possible de décrire comment les communautés accèdent à l’eau de ces infrastructures de différentes manières pour différentes utilisations, en fonction de leurs besoins en eau et des caractéristiques des différents points d’accès. Le système de recharge d’aquifères gérés consiste à recueillir de l’eau de pluie et à retenir les eaux de ruissellement pendant la saison sèche, ce qui augmente la quantité d’eau disponible et permet de diversifier les utilisations de l’eau. Les gestionnaires des eaux devraient donc l’envisager comme option dans leurs initiatives de mise en valeur des ressources en eau afin de répondre tant aux besoins domestiques qu’aux besoins de production des communautés.

Potentiel de réplication du projet pilote du parc Uhuru dans la perspective Kenyane

La ville de Nairobi au Kenya a une population d’environ 5 millions d’habitants au centre- ville, mais la population totale est estimée à environ 10,8 millions d’habitants dans la zone métropolitaine. La ville est confrontée au problème d’eau, car la production actuelle est d’environ 500 000 m3/jour, contre une demande de 800 000 m3/jour. Des infrastructures et des capitaux importants sont nécessaires pour combler ce fossé. Une stratégie qui contribuerait à réduire cet écart serait la bienvenue. La couverture du réseau d’égouts est estimée à environ 50 %, ce qui signifie que 50 % des habitants dépendent d’un système d’assainissement autonome, comme les fosses septiques, les épurateurs et les latrines à fosse dans les cas extrêmes. Une méthode qui permettrait de mettre en place une station d’épuration décentralisée ne nécessitant pas d’infrastructures lourdes comme les réseaux d’égouts serait la bienvenue.

La ville est également confrontée à de grands défis en matière de collecte des eaux usées et des boues de vidanges en raison de la croissance rapide de la population due à l’exode rural, qui a accéléré la croissance démographique. Les rivières de la ville sont fortement polluées en raison des débordements des réseaux d’égouts actuels et des déversements provenant de zones non connectées, comme le quartier de Focus. Le canal ouvert visible dans le parc Uhuru était initialement destiné à acheminer les eaux pluviales, mais il est actuellement utilisé pour acheminer les eaux pluviales mélangées aux eaux usées provenant du débordement de diverses zones et institutions.

À Nairobi, les systèmes de traitement des eaux usées les plus courants sont les étangs de stabilisation et les lagunes aérées, associés à des zones humides artificielles, ainsi que les systèmes de traitement conventionnels. Mais le principal problème est que ces systèmes nécessitent d’énormes infrastructures pour la collecte des eaux usées et leur transport vers un point central. Il est donc essentiel de mettre en place des systèmes décentralisés.

La photo de la page 4 (voir pièce jointe) représente l’une des rivières de Nairobi qui coule tout près d’un quartier informel ; cette photo montre la forte pollution de la rivière et de l’environnement. Cela a certainement aidé le gouvernement à créer la Commission de réhabilitation de la rivière de Nairobi qui vise à nettoyer cette rivière afin que l’eau qui y coule puisse être utilisée à d’autres fins. Le système dont il est question ici s’inscrit dans cette catégorie d’aide à la dépollution des rivières. L’initiative de mettre en place ce système décentralisé dans le parc Uhuru a été lancée à un niveau très élevé, lorsque le président de l’Estonie s’est rendu au Kenya et a échangé avec son homologue, le président du Kenya, autour des domaines de coopération bilatérale. Il en est ressorti que l’Estonie, assez avancée en termes de technologies, notamment dans le domaine du traitement de l’eau et des eaux usées, pourrait aider le Kenya à trouver des moyens très innovants pour traiter les eaux usées, et c’est ainsi que le dispositif Spacedrip a vu le jour. Le président estonien a désigné l’équipe Spacedrip qui l’accompagnait pour réaliser un projet pilote à Nairobi, et le gouvernement kenyan a désigné les services métropolitains de Nairobi et le Bureau Exécutif du président pour travailler sur le projet pilote. Il a été jugé approprié de piloter ce système dans un endroit très central, où d’autres dirigeants et institutions de tout le pays pourraient y avoir accès. C’est ainsi que le projet pilote a été mis en place dans le parc Uhuru (voir pièce jointe, page 7), l’un des principaux parcs de loisirs situé dans le quartier central des affaires de Nairobi. Toute personne venant se divertir dans le parc peut l’apercevoir. La carte (voir pièce jointe, page 6) présente en vert clair le parc Uhuru, qui occupe une position très centrale dans le quartier central des affaires de Nairobi, avec les principales institutions gouvernementales situées à proximité, y compris le Parlement, le bureau du Président, l’hôtel de ville, les grands hôtels et d’autres locaux commerciaux.

Le parc Uhuru a été choisi pour ce projet pilote parce qu’avant l’installation de ce système, l’eau potable était utilisée pour irriguer le parc, qui est une vaste zone de plus de 50 hectares, et cela entraînait une forte pression sur l’eau potable. En effet, la ville connaît déjà un déficit de 300 000m3/jour, et au lieu d’économiser l’eau, cette même eau est utilisée pour irriguer le parc. L’idée d’installer ce système dans le parc Uhuru était donc de s’assurer que les effluents traités par le système seraient utilisés pour irriguer le parc et, ce faisant, de contribuer à réduire la pression sur la demande en eau potable.

Aqua Consult Baltic a conçu la technologie permettant de se connecter à l’infrastructure d’irrigation du parc Uhuru, et il y a eu un partenariat sur la consultation pendant la mise en service et après six mois d’exploitation, l’installation a été remise à la société d’eau et d’assainissement de Nairabi (NCWSC). Ruji Africa a été le partenaire local de Spacedrip pour la préparation, la mise en oeuvre et le pilotage du système automatisé de traitement et de réutilisation des eaux usées. Nous avons déjà obtenu une mise à jour de l’évaluation de l’impact environnemental de la part d’un régulateur : l’Autorité nationale de gestion de l’environnement.

L’un des principaux avantages de ce système de réutilisation de l’eau est qu’il nécessite un espace très réduit et le système de conteneurs peut être installé à l’intérieur d’un bâtiment ou dans des zones plus petites, contrairement aux autres systèmes qui nécessitent d’immenses terrains (dans une ville comme Nairobi, les terrains sont très difficiles à obtenir). Il s’agit donc d’une solution pour les zones qui ne disposent pas de terrain. L’efficacité du système réside dans l’élimination totale des pathogènes dans une zone principale, car les effluents peuvent alors être utilisés à d’autres fins, comme l’irrigation. À l’avenir, les effluents de ce système pourraient également être utilisés pour la chasse d’eau des toilettes et le nettoyage, le cas échéant, compte tenu de la forte demande d’eau pour les services de nettoyage. Pour l’instant, en raison de la stigmatisation associée aux eaux usées, il est peut-être trop tôt pour commencer à parler de leur réutilisation en eau potable. Elles permettent déjà de réduire la pression sur l’eau potable, et on estime que l’adoption de cette technologie de réutilisation de l’eau par la plupart des grands consommateurs d’eau (comme le tourisme, les industries hôtelières, les établissements informels, les bâtiments commerciaux et résidentiels, l’industrie alimentaire…) pourrait contribuer à réduire la demande d’eau d’environ 50%, et la pression sur l’eau potable pourrait alors vraiment diminuer.

L’un des points importants de ce système est l’électricité, en raison de l’automatisation et du pompage au sein du système. Toutefois, ce problème pourra être résolu à l’avenir. Actuellement, le système intègre également le système solaire d’un partenaire qui produit une partie de l’électricité, en particulier pour l’automatisation et les opérations critiques du système. Mais à l’avenir, nous pensons que l’énergie solaire devrait devenir la principale source d’énergie en incorporant davantage de panneaux solaires et de batteries pour stocker l’énergie.

D’un point de vue financier, ce système est avantageux, notamment parce qu’il permet d’économiser sur le coût élevé de la construction de l’infrastructure nécessaire à la centralisation du système. C’est le principal coût qui s’applique au système d’assainissement. Cette technologie décentralisée qui ne nécessite pas de lourdes infrastructures et permet de réaliser une économie spécifique sur les coûts fait de ce système un grand avantage.

Le résultat de ce projet pilote est censé informer et conseiller les décideurs politiques et les aider à élaborer les règlements qui seraient nécessaires pour certaines institutions. Compte tenu de la consommation d’eau et des rejets d’une capacité donnée, il devrait être intéressant d’installer ce système de traitement et de réutilisation de l’eau dans les secteurs du tourisme et de l’hôtellerie, dans les zones urbaines et commerciales, dans les établissements de construction et dans les industries de transformation alimentaires. Cela permettra au secteur privé d’accélérer la couverture en termes d’assainissement et de soutenir les efforts du personnel impliqué dans la gestion et le contrôle des demandes d’approvisionnement en eau. Ainsi, en plus de construire de nouvelles infrastructures qui conduisent une plus grande quantité d’eau, il est possible de mieux gérer la quantité disponible par le traitement et la réutilisation des effluents produits. C’est déjà le cas dans des bâtiments comme l’université locale de Nairobi, qui récupère tout l’eau qui arrive à l’intérieur du bâtiment pour la réutiliser ensuite dans les chasses d’eau. Cette idée n’est pas farfelue et son heure est venue. Les décideurs politiques doivent être conseillés à ce sujet afin d’élaborer les règlements nécessaires pour aider à gérer la distribution d’eau dans le pays.

Projet pilote de traitement et de réutilisation des eaux usées au parc Uhuru de Nairobi, Kenya

Aqua Consult Baltic a été créée en 1997 en Estonie, et la technologie ici présentée a vu le jour au Kenya par l’entremise d’une entreprise locale. Cette société mère située en Allemagne à Hanovre s’est déployée à partir de là. Elle réalise des projets dans le monde entier, notamment dans les États baltes. Il s’agit d’une société d’ingénierie et de conseil qui se spécialise principalement dans le traitement des eaux usées et ses dérivés, la gestion des déchets secondaires et les stations d’épuration des déchets municipaux. La société travaille actuellement sur un projet en Slovénie et à Vienne de 550 000PE et également à Tallinn en Estonie pour 400 000 équivalents. Étant donné que les déchets municipaux industriels sont difficiles à prévoir, il importe de connaître leurs limites et leurs caractéristiques ; aussi, pour ce type de déchets, il est nécessaire de faire beaucoup de modélisation qui inclut le fractionnement des eaux usées et de réaliser le pilotage avant de fournir la solution technique au client. L’entreprise travaille dans le domaine de l’industrie pétrolière et gazière, des aliments chimiques, de l’agriculture, des installations industrielles et des projets liés aux systèmes de réutilisation de l’eau. Actuellement, l’usine d’épuration de Tallinn de 400 000 équivalents transforme l’eau de surface en eau potable par le biais des nouvelles technologies développées. L’entreprise a bâti de bonnes relations avec les universités, qui effectuent les tests et la recherche.

En outre, Spacedrip – également une entreprise estonienne – est une entreprise jeune et innovante axée sur les systèmes d’épuration, qui qui réutilisent de l’eau pour un petit nombre de personnes (25 à 2000) dans les sociétés d’eau, les compagnies de promotion immobilières et le secteur de la défense. Le secteur de la défense, par exemple, dispose d’unités mobiles à différents endroits qui ont besoin d’être approvisionnées en eau ; Spacedrip met à leur disposition des systèmes de douche ou de toilettes avec réutilisation continue d’eau.

Collaboration entre Aqua Consult Baltic et Spacedrip Group

Il y a quelques années, Aqua Consult a informé Spacedrip de la mise sur pied d’un nouveau modèle de maisons, préfabriquées en usine et déployées sur le terrain. Toutefois, il n’y a souvent aucune infrastructure sur le site, ni système d’assainissement ni réseau d’eau potable. Ils avaient besoin d’une machine capable de transformer les eaux usées en eau potable. Spacedrip a réalisé le design qui est utilisé dans l’usine Aqua Consult Baltic, et cette dernière l’a développé jusqu’à obtenir la version actuelle. C’est devenu un produit plus fiable qui peut être entièrement automatisé, un très bon produit. Cet appareil a été financé par le gouvernement estonien en tant que technologie à exporter vers d’autres pays, et dont la valeur ajoutée est la sauvegarde du potentiel de serre et le respect de l’environnement.

Pendant la durée du financement, le Président estonien de l’époque s’est rendu au Kenya. Il connaissait l’existence de cette entreprise de transformation des eaux usées en eau potable ; en effet, il y a moins d’un million d’habitants en Estonie, et presque tout le monde se connaît. Il a fait part de cette technologie au Président du Kenya, et ce dernier a manifesté de l’intérêt, d’où le début de la relation avec des partenaires sur le terrain et le lancement de ce projet au Kenya.

Problématique

Comme l’a si bien dit le Président Kenyan S.E. William Ruto : « Le gouvernement du Kenya a décidé de redorer la réputation du Kenya, ville verte de l’Afrique, et également de posséder son identité ancestrale, celle d’être un fleuve d’eau douce et fraîche ». Le projet du Kenya a émergé suite aux constats ci- après :

– La rivière de Nairobi est assez polluée, et elle doit être nettoyée afin de retrouver la même qualité qu’avant la construction des habitations. Il y a assez de projets en cours pour la rendre plus propre et améliorer l’environnement.

– Deuxièmement, la production d’eau de la ville de Nairobi est d’environ 500 000 m3/jour, mais la quantité nécessaire pour répondre à la demande actuelle est de 800 000 m3 ; on note un manque d’eau propre à utiliser.

– par ailleurs, une grande quantité d’eau potable est utilisée pour couvrir certains besoins qui auraient pu être comblés grâce à l’eau recyclée sûre d’un point de vue technique (chasse d’eau, irrigation, etc.) En effet, les systèmes de récupération d’eau peuvent réduire de 50% la demande en eau (800 000m3/jour sont nécessaires. Alors, si 50% d’eau est économisée, seulement 400 000m3 seront nécessaires). Pour mettre en œuvre ce projet, il ne sera pas nécessaire de mettre à niveau les infrastructures.

Une usine pilote a donc été installée au parc Uhuru, Nairobi, dans l’objectif de :

             i) nettoyer un peu la rivière de Nairobi, et

ii) permettre la récupération de l’eau.

 Solution mise en place

Le dispositif Spacedrip (voir pièce jointe P.7) est une station d’épuration en forme de conteneur qui récupère les eaux usées à partir d’un canal qui traverse le parc Uhuru à Nairobi jusqu’à 50 m3/jour, et les traitent afin qu’elles puissent être réutilisées pour l’irrigation du parc. Le système est géré grâce à un logiciel d’automatisation, qui permet de surveiller le dispositif, de l’exécuter à distance et de le conserver dans un bon état de fonctionnement. Cette technologie n’est pas nouvelle à proprement parler, et elle dispose d’un réservoir de sédimentation avant. Le dispositif comporte une partie biologique où les matières organiques et un peu d’azote sont éliminés ; ensuite, une unité de filtration qui micro-filtre la plupart des bactéries ; l’eau propre entre dans un réservoir dans une chambre technique, d’où elle est filtrée par la lumière UV et par le chlore au besoin. Ainsi, l’eau entre dans la station d’épuration par le canal d’évacuation des eaux pluviales et ressort de la station d’épuration par les gicleurs du parc. L’eau arrive par le canal de passage des eaux pluviales. Il n’y a pratiquement pas d’événements pluvieux, mais une grande quantité d’eau en provenance des fosses septiques et des rejets de sites industriels, lesquelles sont inconnues et difficiles à prévoir. Cela signifie que l’eau qui arrive est assez sale et l’utilisation directe pour l’irrigation n’est pas une bonne idée. Toutefois, après le traitement, l’eau est débarrassée des matières organiques et des bactéries et devient propre. Cette technologie est utilisée depuis maintenant deux semaines au parc Uhuru.

Résultats obtenus

La mise en service s’est bien déroulée il y a un mois environ (mai 2023), et le système fonctionne à pleine capacité depuis maintenant deux semaines. Actuellement, jusqu’à 25% de l’eau d’irrigation nécessaire au parc Uhuru provient de ce dispositif de traitement des eaux usées. Cet appareil a été déployé dans le but de prouver le fonctionnement de ce type de système de technologie plug and play automatisée. Ces unités compactes peuvent être placées n’importe où, y compris dans de petites zones. Le dispositif peut fonctionner longtemps et est actuellement en phase de test. Les résultats d’analyse en entrée et en sortie sont présentés dans le Tableau 2 (Voir pièce jointe P.9), et révèlent une élimination bactérienne de 100% grâce à cette technologie. L’image de l’influent et de la sortie montrent que l’eau obtenue est assez pure. Elle n’est cependant pas assez sure pour être consommée et ne doit être utilisé qu’à des fins d’irrigation.

Conclusion

Ce type de système est identique au dispositif de récupération de l’eau de Seehausen (Allemagne). Mais il s’agit d’une unité plus petite, assez compacte, et qui peut être placée dans de petites zones ou dans de grands centres-villes où les eaux usées sont réduites. L’eau obtenue peut être utilisée pour la chasse d’eau des toilettes ou l’irrigation des espaces verts, et il n’est pas nécessaire de construire de nouvelles infrastructures pour la réutilisation. Grâce à la solution informatique permettant le suivi à distance, il n’est pas nécessaire de se déplacer sur le terrain pour la maintenance.

En revanche, il est possible de planifier la maintenance du système, ce qui lui permet de fonctionner longtemps et d’éviter les pannes. Des images de quelques petits conteneurs de trois mètres avec des douches et des toilettes qui ont été construits par Spacedrip pour des projets militaires sont présentées dans la pièce jointe (Page 10) ; elles peuvent être placés n’importe où pour la réutilisation continue d’eau.

Le passage de la STEP de Brême-Seehausen à une station d’épuration neutre sur le plan énergétique

Au cours de la 6ème édition de la série Ask The Experts sur le thème : « Valoriser les produits dérivés de l’épuration des eaux usées domestiques et industrielles » organisée le 25 avril 2023 par l’Association Africaine de l’Eau et de l’Assainissement (AfWASA) et le Partenariat Germano-Africain pour l’Eau et l’Assainissement (GAPWAS), la collaboration entre les villes de Windhoek en Namibie et de Brême en Allemagne a été présentée.

En effet, les villes de Windhoek et de Brême ont entamé une collaboration en l’an 2000 à partir d’une longue relation historique incluant le soutien à la lutte pour l’indépendance de la Namibie. En 2013, les deux partenaires ont rejoint le projet de partenariat municipal sur le climat, poursuivant ainsi la tradition de partage des connaissances. Ce projet est axé sur la gestion des déchets solides, la gestion des eaux usées et la prestation de services d’assainissement de base dans les quartiers informels, afin de contribuer aux Objectifs de Développement Durable des Nations unies. La ville de Windhoek et Seehausen ont commencé à collaborer en 2018. Cette collaboration basée sur le partage de connaissance s’est principalement focalisée sur des questions liées au traitement des eaux usées. En En général, l’équipe du projet se réunit mensuellement pour discuter et analyser différents sujets, en vue de rechercher des solutions et des améliorations.

L’approche de collaboration au cours des deux dernières années a été axée sur des visites d’échanges autour des sujets d’intérêt commun en Namibie et à Brême. Par exemple, les deux graphiques de variation du débit de l’influent (Voir pièce jointe, Page 3) présentent les volumes des influents par heure dans les usines de Seehausen et de Gammams, ainsi que les concentrations méta organiques par heure. Pour les deux usines, le facteur entre les chiffres quotidiens minimums et maximums est d’environ 0,5. Toutefois, il y a quelques différences entre les tendances ou les schémas horaires par jour, qui peuvent s’expliquer par la variation de la durée du trajet de l’eau jusqu’à la station. À Brême, il existe également une capacité de stockage dans les canalisations. Les schémas peuvent également être différents d’une heure à l’autre en raison des déchets industriels et domestiques. En effet, Gammams à Whindhoek utilise de l’eau d’origine domestique uniquement, tandis que Brême utilise les eaux usées d’origine domestique et industrielle, même si les déchets industriels sont très difficiles à prévoir. Par ailleurs, il n’existe qu’un système d’égout séparé en Namibie, ce qui implique la déviation vers les rivières de la plupart des infiltrations, tandis que Seehausen à Brême dispose à la fois d’un système d’égout combiné et d’un système d’égouts séparés. Ces facteurs sont importants et peuvent être associés à d’autres éléments pour corriger les fautes dans une optique d’amélioration et pour planifier l’optimisation pour une meilleure efficacité du processus.

Voilà donc quelques indications sur la coopération actuelle, qui vise à mieux connaître la destination du carbone produit et de son utilisation. Dans l’un des bilans de la station d’épuration de Brême (voir pièce jointe, Page 4), la quantité de carbone transférée dans le réacteur biologique et la quantité emmenée à la digestion est présentée. Le biogaz est dérivé de cela, grâce à une centrale de production combinée de chaleur et d’électricité à partir de laquelle de l’énergie peut être produite. Ainsi, chaque optimisation d’une station d’épuration peut changer l’avenir. Les résultats à la fin du processus de traitement devraient être la possibilité de produire davantage d’énergie et de gaz, ou l’utilisation du carbone pour la dénitrification afin d’obtenir une meilleure qualité de l’affluent de la station d’épuration. Les échanges avec les laboratoires qui effectuent les analyses et les autres partenaires du secteur des eaux usées portent sur les similitudes au niveau des opérations et des tâches spéciales, ainsi que sur l’identification des bonnes pratiques qui peuvent être apprises des uns et des autres. Par exemple, Windhoek possède 50 années d’expérience en élimination des micropolluants et en adaptation au changement climatique. Brême peut apprendre ce savoir-faire de Windhoek, d’autant plus que la ville de Brême devient de plus en plus sèche ; les masses d’eau naturelles se réduisent de plus en plus et la ville doit réfléchir à la manière d’utiliser l’eau et déterminer pour quel usage. Par exemple, Brême utilise de l’eau semi-purifiée pour les jardins ou les lieux publics tout comme Windhoek. Par ailleurs, Brême se prépare depuis 30 ans à faire face aux précipitations et Windhoek pourrait s’en inspirer.

La plus grande station d’épuration de Brême est celle de Seehausen, et un processus est en cours pour obtenir une station neutre sur le plan énergétique. Brême est une ville située dans le nord de l’Allemagne, et le responsable de l’assainissement de la ville est HanseWasser, qui fonctionne sur la base d’un modèle de partenariat public-privé. La région de Brême est très plate ; par conséquent, plus de 200 stations de pompage sont nécessaires pour pomper chaque goutte d’eau usée contre la gravité jusqu’à la station d’épuration de Brême- Seehausen située dans la région la plus élevée de la ville (d’une hauteur de 1012 mètres supérieure au reste).

La station d’épuration de Seehausen comptait environ 1 million d’habitants raccordés, et la station d’épuration des eaux usées de la partie nord de Brême comptait environ 160 000 habitants raccordés. La présentation (Voir pièce jointe, Page 8) met en évidence un très bon développement de l’autoproduction d’énergie, avec deux (2) grandes étapes entre 2010- 2011 et en 2013. La première étape a été l’introduction d’une nouvelle éolienne et en 2013, la centrale de production combinée de chaleur et d’électricité a été renouvelée, ce qui a permis de générer plus d’énergie à partir du gaz disponible. En 2022, l’autoproduction s’élevait à 130 %, avec environ 100 % provenant des centrales de production combinée de chaleur et d’électricité et 28 % des éoliennes. Il pleut très souvent à Brême, et la ville ne peut générer qu’environ 1 à 2 % d’énergie à partir de l’autoproduction. La ville ne s’est pas seulement focalisée sur la production, mais aussi sur la réduction de la consommation totale d’énergie de l’usine, avec une baisse d’environ 25 % au fil des ans grâce à l’optimisation et à un nouvel agrégat.

La consommation d’énergie spécifique par habitant est également un indicateur de réduction. Le passage de Brême vers la neutralité énergétique repose sur trois piliers :

  • La première est le renouvellement de la puissance. Trois (03) unités de production combinée de chaleur et d’électricité ont été renouvelées. Chaque unité a une puissance électrique d’environ 1,4 mégawatt et une turbine éolienne (Voir pièce jointe, Page 9). L’énergie qui provient de la centrale de production combinée de chaleur et d’électricité peut être utilisée pour améliorer la production de gaz.
  • Certains projets sont également en cours pour augmenter la production de gaz, y compris une réduction de la demande d’un point de vue technique par un réinvestissement spécifique. Il est également économiquement viable d’obtenir de nouveaux agrégats avec une demande spécifique plus faible. Par exemple, dans ce cas, un hall de compression de sept (7) compresseurs pour l’appropriation des processus internes.
  • Le troisième pilier est l’optimisation. Il existe un jumeau numérique de la station de traitement de Brême qui permet de mener tous les processus biologiques. Cette technologie numérique permet d’optimiser les processus, notamment l’aération et la quantité d’oxygène requise pour la partie microbiologique. Certaines règles DWA A-216 décrites dans la présentation (voir pièce jointe, Page 11) peuvent également être utilisées pour déterminer la quantité d’énergie nécessaire et la possibilité de la réduire davantage (comment réaliser un contrôle énergétique, une analyse énergétique pour les stations d’épuration des eaux usées en Allemagne, avec des lignes directrices pour l’ensemble du processus de calcul). Une analyse énergétique permet de déterminer la meilleure valeur possible qui peut être atteinte pour une demande énergétique spécifique d’une station d’épuration, avec un accent sur la quantité d’énergie qui peut éventuellement être réduite dans le cadre de projets futurs.

La présentation présente quelques règles établies (voir pièce jointe, Page 12) liées à des consommations d’énergie spécifique de l’ensemble de la station d’épuration. La demande totale d’énergie de la station est connue, ainsi que le nombre d’habitants connectés à la station ; ces informations permettent de calculer la demande d’énergie spécifique en kw/h par habitant et par an ; comprendre le système d’analyse comparative de cet ensemble de règles permet de trouver la fréquence des écarts les plus faibles et de comprendre le système d’autosurveillance de l’énergie d’une station. La présentation met également en évidence les résultats des analyseurs d’énergie de l’usine, ainsi que les meilleures valeurs que l’usine peut atteindre au cours de l’année (voir pièce jointe, Page 13). Bremen-Fargo est un peu loin de cette valeur ajoutée et doit trouver comment améliorer la consommation d’énergie de la station d’épuration.

Pour conclure, le projet a démarré à un moment favorable, en raison de la présence de nombreux agrégats pour la production d’énergie et d’une forte demande d’énergie à renouveler. Un objectif visant à atteindre la neutralité énergétique été fixé à l’échelle de l’entreprise, ce qui a permis de réduire la demande spécifique d’agrégats et d’augmenter l’efficacité de la production.